Skip to main content

X-Ray Photoelectron Spectroscopy (XPS): Principles and Application for the Analysis of Photoactive Materials

  • Chapter
  • First Online:
Springer Handbook of Inorganic Photochemistry

Abstract

X-ray photoelectron spectroscopy (XPS) plays a crucial role in the surface analysis of different organic and inorganic materials. The information that could be obtained through XPS analysis (chemical state, coordination, particle size) is very important from the material science point of view. However, the exact interpretation of the XPS results often poses problems because of the complexity of the XPS analysis and existence of various phenomena that have to be taken into account. Thus the aim of this work is to provide a general introduction on fundamental principles of XPS analysis and to help researchers in developing a good practice in XPS results interpretation especially for complex XPS spectra. The overview of most important aspects and theoretical models is presented. Examples of XPS application for analysis of photoactive materials are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Briggs, D., Seah, M.P. (eds.): Practical Surface Analysis, 2nd Ed. Volume 1 - Auger and X-Ray Photoelectron Spectroscopy. Wiley, Chichester (1990)

    Google Scholar 

  2. Brundle, C.R., Baker, A.D. (eds.): Electron Spectroscopy: Theory, Experiments and Applications. Academic Press, New York (1978)

    Google Scholar 

  3. Seah, M.P., Dench, W.A.: Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1(1), 2–11 (1979)

    Article  CAS  Google Scholar 

  4. Tanuma, S., Powell, C.J., Penn, D.R.: Calculations of electron inelastic mean free paths. Surf. Interface Anal. 21, 165–176 (1993)

    Article  Google Scholar 

  5. Powell, C.J., Jablonski, A.: Surface sensitivity of X-ray photoelectron spectroscopy. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 601(1–2), 54–65 (2009)

    Article  CAS  Google Scholar 

  6. Okada, K., Kotani, A.: Theory of core level X-ray photoemission photoabsorption in Ti compounds. J. Electron Spectros. Relat. Phenomena. 62, 131–140 (1993)

    Article  CAS  Google Scholar 

  7. Borman, V.D., Lai, X.C., Pushkin, M.A., Tronin, V.N., Troyan, V.I.: The Coster-Kronig process used to study the transition of metal nanoclusters into a nonmetallic state. J. Exp. Theor. Phys. Lett. 76, 444–449 (2002)

    Article  CAS  Google Scholar 

  8. Weightman, P.: X-ray-excited Auger and photoelectron spectroscopy. Reports Prog. Phys. 45(7), 753–814 (1982)

    Article  Google Scholar 

  9. Scofield, J.H.: Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J. Electron Spectros. Relat. Phenomena. 8(2), 129–137 (1976)

    Article  CAS  Google Scholar 

  10. Yeh, J.J., Lindau, I.: Atomic subshell photoionization cross sections and assymetry parameters. At. Data Nucl. Data Tables. 32, 1–155 (1985)

    Article  CAS  Google Scholar 

  11. ASTM E2735–14, Standard Guide for Selection of Calibrations Needed for X-ray Photoelectron Spectroscopy (XPS) Experiments, ASTM International, West Conshohocken, PA, 2014, www.astm.org, (accessed on 28th of April, 2019) https://doi.org/10.1520/E2735-14

  12. Baldovino-Medrano, V.G., Thang Le, M., Van Driessche, I., Bruneel, E., Gaigneaux, E.M.: Influence of graphite as a shaping agent of bi molybdate powders on their mechanical, physicochemical, and catalytic properties. Ind. Eng. Chem. Res. 50(9), 5467–5477 (2011)

    Article  CAS  Google Scholar 

  13. Jacquemin, M., Genet, M.J., Gaigneaux, E.M., Debecker, D.P.: Calibration of the X-ray photoelectron spectroscopy binding energy scale for the characterization of heterogeneous catalysts: is everything really under control? ChemPhysChem. 14(15), 3618–3626 (2013)

    Article  CAS  PubMed  Google Scholar 

  14. Greczynski, G., Hultman, L.: C 1s peak of adventitious carbon aligns to the vacuum level: dire consequences for material’s bonding assignment by photoelectron spectroscopy. ChemPhysChem. 18(12), 1507–1512 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kelly, M.: Historical perspectives on charging issues in XPS. J. Electron Spectros. Relat. Phenomena. 176, 5–7 (2010)

    Article  CAS  Google Scholar 

  16. Suzer, S., Sezen, H., Ertas, G., Dâna, A.: XPS measurements for probing dynamics of charging. J. Electron Spectros. Relat. Phenomena. 176, 52–57 (2010)

    Article  CAS  Google Scholar 

  17. Cazaux, J.: Secondary electron emission and charging mechanisms in Auger Electron Spectroscopy and related e-beam techniques. J. Electron Spectros. Relat. Phenomena. 176, 58–79 (2010)

    Article  CAS  Google Scholar 

  18. Tielsch, B.J., Fulghum, J.E.: Differential charging in XPS. Part I: demonstration of lateral charging in a bulk insulator using imaging XPS. Surf. Inter. Anal. 24(1), 28–33 (1996)

    Article  Google Scholar 

  19. Vereecke, G., Rouxhet, P.G.: Surface charging of insulating samples in x-ray photoelectron spectroscopy. Surf. Inter. Anal. 26(7), 490–497 (1998)

    Article  CAS  Google Scholar 

  20. Greczynski, C., Hultma, L.: X-ray photoelectron spectroscopy: towards reliable binding energy referencing. Prog. Mater. Sci. 107, 100591–100637 (2020)

    Article  CAS  Google Scholar 

  21. Powell, C.J., Jablonski, A.: Progress in quantitative surface analysis by X-ray photoelectron spectroscopy: current status and perspectives. J. Electron Spectros. Relat. Phenomena. 178–179(C), 331–346 (2010)

    Article  CAS  Google Scholar 

  22. Wagner, C.D., Davis, L.E., Zeller, M.V., Taylor, J.A., Raymond, R.H., Gale, L.H.: Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surf. Inter. Anal. 3(5), 211–225 (1981)

    Article  CAS  Google Scholar 

  23. Siegbahn, K.: Electron spectroscopy - an outlook. J. Electron Spectros. Relat. Phenomena. 5(1), 3–97 (1974)

    Article  CAS  Google Scholar 

  24. Simpson, R., White, R., Watts, J., Baker, M.: XPS investigation of monatomic and cluster argon ion sputtering of tantalum pentoxide. Appl. Surf. Sci. 405, 79–87 (2017)

    Article  CAS  Google Scholar 

  25. NIST. NIST X-ray photoelectron spectroscopy database. National Institute of Standards and Technology. Available at: https://srdata.nist.gov/xps/ (2012)

  26. Wagner, C.D.: Chemical shifts of Auger lines, and the Auger parameter. Faraday Discuss. Chem. Soc. 60, 291–300 (1975)

    Article  Google Scholar 

  27. Swingle II, R., Riggs, W., Amy, J.: ESCA. Crit. Rev. Anal. Chem. 5(3), 267–321 (1975)

    Article  CAS  Google Scholar 

  28. Fujikawa, T.: ‘Reprint of’ new developments in theory of X-ray photoemission from solids. J. Electron Spectros. Relat. Phenomena. 178–179, 33–60 (2010)

    Article  CAS  Google Scholar 

  29. Bagus, P.S., Ilton, E., Nelin, C.J.: Extracting chemical information from XPS spectra: a perspective. Catal. Lett. 148, 1785–1802 (2018)

    Article  CAS  Google Scholar 

  30. Vincent Crist, B.: A review of XPS data-banks. XPS Reports. 1, 1–52 (2007)

    Google Scholar 

  31. Kim, K.S.: Charge transfer transition accompanying x-ray photoionization in transition-metal compounds. J. Electron Spectros. Relat. Phenomena. 3(3), 217–226 (1974)

    Article  CAS  Google Scholar 

  32. Nesbitt, H.W., Legrand, D., Bancroft, G.M.: Interpretation of Ni2p XPS spectra of Ni conductors and Ni insulators. Phys. Chem. Miner. 27(5), 357–366 (2000)

    Article  CAS  Google Scholar 

  33. Clark, D.T., Dilks, A.: ESCA studies of polymers. VII. Shake-up phenomena in some alkane-styrene copolymers. J. Polym. Sci. Polym. Chem. Ed. 14(3), 533–542 (1976)

    Article  CAS  Google Scholar 

  34. Hüfner, S., Wertheim, G.K.: Core-line asymmetries in the x-ray-photoemission spectra of metals. Phys. Rev. B. 11(2), 678–683 (1975)

    Article  Google Scholar 

  35. Desimoni, E., Casella, G.I., Cataldi, T.R.I., Malitesta, C.: A comparison of some asymmetricalline shape for XPS data analysis. J. Electron Spectros. Relat. Phenomena. 49, 247–261 (1989)

    Article  CAS  Google Scholar 

  36. Sobczak, I., Szrama, K., Wojcieszak, R., Gaigneaux, E., Ziolek, M.: CuxCryOz mixed oxide as a promisiong support for gold. The effect of Au loading method on the effectiveness in oxidation reactions. Catal. Today. 187, 48–55 (2012)

    Article  CAS  Google Scholar 

  37. Walton, J., Alexander, M.R., Fairley, N., Roach, P., Shard, A.G.: Film thickness measurement and contamination layer correction for quantitative XPS. Surf. Interface Anal. 48(3), 164–172 (2016)

    Article  CAS  Google Scholar 

  38. CasaXPS Software. http://www.casaxps.com/

  39. Shard, A.G.: Detection limits in XPS for more than 6000 binary systems using Al and Mg Kα X-rays. Surf. Inter. Anal. 46, 175–185 (2014)

    Article  CAS  Google Scholar 

  40. Ghosh, T.B., Sreemany, M.: On the selection of an integration limit for quantitative XPS analysis. Appl. Surf. Sci. 64(1), 59–70 (1993)

    Article  CAS  Google Scholar 

  41. Korin, E., Froumin, N., Cohen, S.: Surface analysis of nanocomplexes by X-ray photoelectron spectroscopy (XPS). ACS Biomater Sci. Eng. 3, 882–889 (2017)

    Article  CAS  PubMed  Google Scholar 

  42. Genet, M.J., Dupont-Gillain, C.C., Rouxhet, P.G.: XPS analysis of biosystems and biomaterials. In: Matijevic, E. (ed.) Medical Applications of Colloids, 1st edn, pp. 177–305. New York, Springer (2008)

    Google Scholar 

  43. Piao, H., McIntyre, N.S.: Adventitious carbon growth on aluminium and gold–aluminium alloy surfaces. Surf. Interface Anal. 33, 591–594 (2002)

    Article  CAS  Google Scholar 

  44. Rouxhet, P.G., Genet, M.J.: XPS analysis of bio-organic systems. Surf. Inter. Anal. 43(12), 1453–1470 (2011)

    Article  CAS  Google Scholar 

  45. Desimoni, E., Casella, G.I., Salvi, A.M., Cataldi, T.R.I., Morone, A.: XPS investigation of ultra-high-vacuum storage effects on carbon fibre surfaces. Carbon. 30, 527–531 (1992)

    Article  CAS  Google Scholar 

  46. Cousens, D.R., Wood, B.J., Wang, J.Q., Atrens, A.: Implications of specimen preparation and of surface contamination for the measurement of the grain boundary carbon concentration of steels using x-ray microanalysis in an UHV FESTEM. Surf. Interface Anal. 29, 23–32 (2000)

    Article  CAS  Google Scholar 

  47. Miller, D.J., Biesinger, M.C., McIntyre, N.S.: Interactions of CO2 and CO at fractional atmosphere pressures with iron and iron oxide surfaces: one possible mechanism for surface contamination? Surf. Interface Anal. 33, 299–305 (2002)

    Article  CAS  Google Scholar 

  48. Castle, J.E., Salvi, A.M., Guascito, M.R.: Substrate-related feature in the loss structure of contamination C 1s. Surf. Interface Anal. 27, 753–760 (1999)

    Article  CAS  Google Scholar 

  49. Smith, G.C.: Evaluation of a simple correction for the hydrocarbon contamination layer in quantitative surface analysis by XPS. J. Electron Spectrosc. Relat. Phenom. 148, 21–28 (2005)

    Article  CAS  Google Scholar 

  50. Ebel, M.F., Schmid, M., Ebel, H., Vogel, A.: Reduced thickness of contamination layers determined from C 1s- and CKVV-lines. J. Electron Spectrosc. Relat. Phenom. 34, 313–316 (1984)

    Article  CAS  Google Scholar 

  51. Vereecke, G., Rouxhet, P.G.: New method to correct for the influence of organic contamination on intensity ratios in quantitative XPS. Surf. Interface Anal. 27, 761–769 (1999)

    Article  CAS  Google Scholar 

  52. Wojcieszak, R., Genet, M., Eloy, P., Ruiz, P., Gaigneaux, E.: Determination of the size of supported Pd nanoparticles by X-ray photoelectron spectroscopy. Comparison with X-ray diffraction, transmission electron microscopy, and H2 chemisorption methods. J. Phys. Chem. C. 114, 16677–16684 (2010)

    Article  CAS  Google Scholar 

  53. La Surface Data Base. XPS database. www.lasurface.com

  54. Wojcieszak, R., Jasik, A., Monteverdi, S., Ziolek, M., Bettahar, M.M.: Nickel niobia interaction in non-classical Ni/Nb2O5 catalysts. J. Mol. Catal. Chem. 256, 225–233 (2006)

    Article  CAS  Google Scholar 

  55. Militello, M.C., Simko, S.J.: Palladium oxide (PdO) by XPS. Surf. Sci. Spectra. 3(4), 387–394 (1997)

    Article  CAS  Google Scholar 

  56. Mark Davis, S.: Particle size information from dispersed phase photoemission intensity ratios. J. Catal. 117, 432–446 (1989)

    Article  Google Scholar 

  57. Kerkhof, F.P.J.M., Moulijn, J.A.: Quantitative analysis of XPS intensities for supported catalysts. J. Phys. Chem. 83, 1612–1619 (1979)

    Article  CAS  Google Scholar 

  58. Brun, M., Berthet, A., Betolini, J.C.: XPS, AES and Auger parameter of Pd and PdO. J. Elect. Spectr. Related Phenom. 104(55–60) (1999)

    Google Scholar 

  59. Tougaard, S.: QUASES-IMFP-TPP2M Program. Quases-Tougaard Inc. (2002)

    Google Scholar 

  60. Strehlow, W.H., Cook, E.L.: Compilation of energy band gaps in elemental and binary compound semiconductors and insulators. J. Phys. Ref. Data. 2, 163–199 (1973)

    Article  CAS  Google Scholar 

  61. Wagner, C.D., Joshi, A.: The auger parameter, its utility and advantages: a review. J. Elect. Spect. Related Phen. 47, 283–313 (1988)

    Article  CAS  Google Scholar 

  62. J. Rodríguez-Pereira, MSc Thesis, Universidad Industrial de Santander, Bucaramanga, Colombia, 2018, available at: http://tangara.uis.edu.co/biblioweb/tesis/2018/173089.pdf

  63. Wojcik, J.C.: Hard X-ray photoelectron spectroscopy (HAXPES). In: Springer Series in Surface Science, vol. 59. Springer (2016)

    Google Scholar 

  64. Regoutz, A., Mascheck, M., Wiell, T., Eriksson, S., Lijenberg, C., Tetzner, K., Williamson, B., Scanlon, D., Palmgren, P.: A novel laboratory-based hard X-ray photoelectron spectroscopy system. Rew. Sci. Instr. 89, 073105 (2018)

    Article  CAS  Google Scholar 

  65. Sotelo-Vazquez, C., Quesada-Cabrera, R., Ling, M., Scanlon, D.O., Kafizas, A., Thakur, P.K., Lee, T.-L., Taylor, A., Watson, G.W., Palgrave, R.G., Durrant, J.R., Blackman, C.S., Parkin, I.P.: Evidence and effect of photogenerated charge transfer for enhanced photocatalysis in WO3/TiO2 heterojunction films: a computational and experimental study. Adv. Funct. Mater. 27(18), 1605413 (2017)

    Article  CAS  Google Scholar 

  66. Rumaiz, A.K., Woicik, J.C., Cockayne, E., Lin, H.Y., Jaffari, G.H., Shah, S.I.: Oxygen vacancies in N doped anatase TiO2: experiment and first-principles calculations. Appl. Phys. Lett. 95(26), 262111 (2009)

    Article  CAS  Google Scholar 

  67. Harwell, J.R., Baikie, T.K., Baikie, I.D., Payne, J.L., Ni, C., Irvine, J.T.S., Turnbull, G.A., Samuel, I.D.W.: Probing the energy levels of perovskite solar cells: via Kelvin probe and UV ambient pressure photoemission spectroscopy. Phys. Chem. Chem. Phys. 18(29), 19738–19745 (2016)

    Article  CAS  PubMed  Google Scholar 

  68. Snook, J.H., Samuelson, L.A., Kumar, J., Kim, Y.G., Whitten, J.E.: Ultraviolet photoelectron spectroscopy of nanocrystalline TiO2 films sensitized with (2,2′-bipyridyl)ruthenium(II) dyes for photovoltaic applications. Org. Electron. Physics Mater. Appl. 6(2), 55–64 (2005)

    CAS  Google Scholar 

  69. Bluhm, H., Hävecker, M., Knop-Gericke, A., Kleimenov, E., Schlögl, R., Teschner, D., Bukhtiyarov, V.I., Ogletree, D.F., Salmeron, M.: Methanol oxidation on a copper catalyst investigated using in situ X-ray photoelectron spectroscopy. J. Phys. Chem. B. 108(38), 14340–14347 (2004)

    Article  CAS  Google Scholar 

  70. Jami, M., Dillert, R., Suo, Y., Bahnemann, D., Wark, M.: Photoactivity of titanium dioxide foams. Int. J. Photoenergy. 2018, 5057814 (2018)

    Article  CAS  Google Scholar 

  71. Vogelbaum, H., Sauvé, G.: Recently developed high-efficiency organic photoactive materials for printable photovoltaic cells: a mini review. Synth. Metals. 223, 107–121 (2017)

    Article  CAS  Google Scholar 

  72. Carius, R.: Structural and optical properties of microcrystalline silicon for solar Celle applications. In: Marshall, J., Dimova-Malinovska, D. (eds.) Photovoltic and Photoactive Materials, pp. 93–108. Springer, Netherlands (2002, ISBN: 978-1-4020-0824-5)

    Google Scholar 

  73. Castro, C., Centeno, A., Goraldo, S.: Iron promotion of the TiO2 photosensitization process towards the photocatalytic oxidation of azo dyes under solar-simulated light irradiation. Mat. Chem. Phys. 129, 1176–1183 (2011)

    Article  CAS  Google Scholar 

  74. Castro, C., Osorio, P., Sienkiewicz, A., Pulgarin, C., Centeno, A., Giraldo, S.: Photocatalytic production of 1O2 and •OH mediated by silver oxidation during the photoinactivation of Escherichia coli with TiO2. J. Hazard. Mat. 211-212, 172–181 (2012)

    Article  CAS  Google Scholar 

  75. Castro-Lopez, C., Centeno, A., Giraldo, S.: Fe-modified TiO2 photocatalysts for the oxidative degradation of recalcitrant water contaminants. Catal. Today. 157, 119–124 (2010)

    Article  CAS  Google Scholar 

  76. Liu, L., Chen, X.: Titanium dioxide nanomaterials: self-structural modifications. Chem. Rev. 114, 9890–9918 (2014)

    Article  CAS  PubMed  Google Scholar 

  77. Tschirch, J., Bahnemann, D., Wark, M., Rathouský, J.: A comparative study into the photocatalytic properties of thin mesoporous layers of TiO2 with controlled mesoporosity. J. Photochem. Photobio. A: Chem. 194, 181–188 (2008)

    Article  CAS  Google Scholar 

  78. Ismail, A.A., Hakki, A., Bahnemann, D.W.: Mesostructure Au/TiO2 nanocomposites for highly efficient catalytic reduction of p-nitrophenol. J. Mol. Catal. A Chem. 358, 145–151 (2012)

    Article  CAS  Google Scholar 

  79. Zhao, Y., Zhang, X., Zhai, J., Jiang, L., Liu, Z., Nishimoto, S., Murakami, T., Fujishima, A., Zhu, D.: Ultrastable TiO2 foams derived macro-/meso-porous material and its photocatalytic activity. Microp. Mesop. Mater. 116, 710–714 (2008)

    Article  CAS  Google Scholar 

  80. Ismail, A.A., Bahnemann, D.W., Rathousky, J., Yarovyi, V., Wark, M.: Multilayered ordered mesoporous platinum/titania composite films: does the photocatalytic activity benefit from the film thickness? J. Mater. Chem. 21, 7802–7810 (2011)

    Article  CAS  Google Scholar 

  81. Diebold, U.: The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003)

    Article  CAS  Google Scholar 

  82. Chen, X., Mao, S.: Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007)

    Article  CAS  PubMed  Google Scholar 

  83. Nowotny, J.: Oxide Semiconductors for Solar Energy Conversion: Titanium Dioxide, 1st edn. CRC Press, Boca Ratón (2017)., ISBN 9781138074873

    Google Scholar 

  84. Jayashree, S., Ashokkumar, M.: Switchable intrinsic defect chemistry of titania for catalytic applications. Catalysts. 8(12), 601–626 (2018)

    Article  CAS  Google Scholar 

  85. Wiley-VCH (Ed.): Ullmann’s Encyclopedia of Industrial Chemistry. 7th ed. (Wiley-VCH, 2011)

    Google Scholar 

  86. Grzmil, B., Grela, D., Kic, B.: Formation of hydrated titanium dioxide from seeded titanyl sulphate solution. Chem. Papers. 63(2), 217–225 (2009)

    Article  CAS  Google Scholar 

  87. Baldovino-Medrano, V.G., Pollefeyt, G., Bliznuk, V., van Driessche, I., Gaigneaux, E., Ruiz, P., Wojcieszak, R.: Synergetic behavior of TiO2-supported Pd(z)Pt(1-z) catalysts in the green synthesis of methyl formate. ChemCatChem. 8(6), 1157–1166 (2016)

    Article  CAS  Google Scholar 

  88. Nowotny, M.K., Bak, T., Nowotny, J.: Electrical properties and defect chemistry of TiO2 single crystal. I. Electrical conductivity. J. Phys. Chem. B. 110(33), 16270–16282 (2006)

    Article  CAS  PubMed  Google Scholar 

  89. Jahn, H.A., Teller, E.: Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy. Proc. R. Soc. A. 161(A905), 220–235 (1937)

    CAS  Google Scholar 

  90. Ohtani, B., Prieto Mahaney, O., Li, D., Abe, R.: What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. J. Photochem. PhotoBio. A: Chem. 216, 179–182 (2010)

    Article  CAS  Google Scholar 

  91. Hurum, D., Agrios, A., Gray, K., Rajh, T., Thurnauer, M.: Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B. 107, 4545–4549 (2003)

    Article  CAS  Google Scholar 

  92. van der Heide, P.: X-ray Photoelectron Spectroscopy: An Introduction to Principles and Practices, ISBN 978-1-118-06253-1, p. 264. Wiley (2011)

    Book  Google Scholar 

  93. Kim, K.S., Winograd, N.: Charge transfer shake-up satellites in X-ray photoelectron spectra of cations and anions of SrTiO3, TiO2 and Sc2O3. Chem. Phys. Lett. 31(2), 312–317 (1975)

    Article  CAS  Google Scholar 

  94. Scrocco, M.: X-ray photoelectron spectra of Ti4+ in TiO2. Evidence of band structure. Chem. Phys. Lett. 61(3), 453–456 (1979)

    Article  CAS  Google Scholar 

  95. Coster, D., Kronig, R.D.L.: New type of Auger effect and its influence on the x-ray spectrum. Physica. 2, 13–24 (1935)

    Article  CAS  Google Scholar 

  96. Ohno, M.: Effects of Coster–Kronig fluctuation and decay on X-ray photoelectron spectroscopy spectra. J. Elect. Spectr. Related Phenom. 131–132, 3–28 (2003)

    Article  CAS  Google Scholar 

  97. Bagus, P., Nelin, C., Brundle, C., Chambers, S.: A new mechanism for XPS line broadening: the 2p-XPS of Ti(IV). J. Phys. Chem. C. 123, 7705–7716 (2019)

    Article  CAS  Google Scholar 

  98. Diebold, U.: TiO2 by XPS. Surf. Sci. Spectra. 4, 227 (1996)

    Article  CAS  Google Scholar 

  99. Mayer, J.T., Garfunkel, E., Madey, T.E., Diebold, U.: Titanium and reduced titania overlayers on titanium dioxide (110). J. Electron Spectrosc. Relat. Phenom. 73, 1–11 (1995)

    Article  CAS  Google Scholar 

  100. Biesinger, M., Lau, L., Gerson, A., Smart, R.: Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 257, 887–898 (2010)

    Article  CAS  Google Scholar 

  101. Bharti, B., Kumar, S., Lee, H., Kumar, R.: Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Sci. Rep. 6, 32355 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Perez, I., Sosa, V., Perera, F., Galindo, J., Carrejo, J., Gonzalez, P., Rodriguez, C.: XPS depth profiling analysis of crystalline tantalum pentoxide films. Appl. Surf. Sci.. arXiv:1804.02067, 10 (2018)

    Google Scholar 

  103. Atanassova, E., Spassov, D.: X-ray photoelectron spectroscopy of thermal thin Ta2O5 films on Si. Appl. Surf. Sci. 135, 71–82 (1998)

    Article  CAS  Google Scholar 

  104. Ivanov, M.V., Perevalov, T.V., Aliev, V.S., Gritsenko, V.A., Kaichev, V.V.: Electronic structure of δ-Ta2O5 with oxygen vacancy: ab initio calculations and comparison with experiment. J. Appl. Phys. 110, 024115 (2011)

    Article  CAS  Google Scholar 

  105. Ivanov, M.V., Perevalov, T.V., Aliev, V.S., Gritsenko, V.A., Kaichev, V.V.: Ab initio simulation of the electronic structure of δ-Ta2O5 with oxygen vacancy and comparison with experiment. J. Exp. Theo. Phys. 112, 1035–1041 (2011)

    Article  CAS  Google Scholar 

  106. Gonçalves, R.V., Wojcieszak, R., Uberman, P.M., Teixeira, S.R., Rossi, L.M.: Insights into the active surface species formed on Ta2O5 nanotubes in the catalytic oxidation of CO. Phys. Chem. Chem. Phys. 16, 5755–5762 (2014)

    Article  PubMed  CAS  Google Scholar 

  107. Wang, K., Liu, Z., Cruz, T.H., Salmeron, M., Liang, H.: In situ spectroscopic observation of activation and transformation of tantalum suboxides. J. Phys. Chem. A. 114, 2489–2497 (2010)

    Article  CAS  PubMed  Google Scholar 

  108. Roginskaya, Y.E., Morozova, O.V., Loubnin, E.N., Popov, A.V., Ulitina, Y.I., Zhurov, V.V., Ivanov, S.A., Trasatti, S.: X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopic characterization of IrO2 + Ta2O5 films. J. Chem. Soc. Faraday Trans. 89, 1707–1715 (1993)

    Article  CAS  Google Scholar 

  109. Wang, J., Su, S., Liu, B., Cao, M., Hu, C.: One-pot, low-temperature synthesis of self-doped NaTaO3 nanoclusters for visible-light-driven photocatalysis. Chem. Commun. 49, 7830–7832 (2013)

    Article  CAS  Google Scholar 

  110. Vogel, R., Hoyer, P., Weller, H.: Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. J. Phys. Chem. 98, 3183–3188 (1994)

    Article  CAS  Google Scholar 

  111. Jin-nouchi, Y., Naya, S., Tada, H.: Quantum-dot-sensitized solar cell using a photoanode prepared by in situ photodeposition of CdS on nanocrystalline TiO2 films. J. Phys. Chem. C. 114, 16837–16842 (2010)

    Article  CAS  Google Scholar 

  112. Baker, D.R., Kamat, P.V.: Photosensitization of TiO2 nanostructures with CdS quantum dots: particulate versus tubular support architectures. Adv. Funct. Mater. 19, 805–811 (2009)

    Article  CAS  Google Scholar 

  113. Lee, H.-J., Leventis, H.C., Moon, S.-J., Chen, P., Ito, S., Haque, S.A., Torres, T., Nüesch, F., Geiger, T., Zakeeruddin, S.M., Grätzel, M., Nazeeruddin, M.K.: PbS and CdS quantum dot-sensitized solid-state solar cells: “old concepts, new results”. Adv. Funct. Mater. 19, 2735–2742 (2009)

    Article  CAS  Google Scholar 

  114. Ghazzal, M., Wojcieszak, R., Raj, G., Gaigneaux, E.: Study of mesoporous CdS-quantum-dot-sensitized TiO2 films by using X-ray photoelectron spectroscopy and AFM. Beilstein J. Nanotechnol. 5, 68–76 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Malashchonak, M.V., Poznyak, S.K., Streltsov, E.A., Kulak, A.I., Korolik, O.V., Mazanik, A.V.: Photoelectrochemical and Raman characterization of In2O3 mesoporous films sensitized by CdS nanoparticles. Beilstein J. Nanotechnol. 4, 255–261 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Bessekhouad, Y., Chaoui, N., Trzpit, M., Ghazzal, N., Robert, D., Weber, J.V.: UV–vis versus visible degradation of Acid Orange II in a coupled CdS/TiO2 semiconductors suspension J. Photochem. Photobiol. A. 183, 218–224 (2006)

    Article  CAS  Google Scholar 

  117. Yu, P., Zhu, K., Norman, A.G., Ferrere, S., Frank, A.J., Nozik, A.: Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots. J. Phys. Chem. B. 110, 25451–25454 (2006)

    Article  CAS  PubMed  Google Scholar 

  118. Ahmed, R., Will, G., Bell, J., Wang, H.: Size-dependent photodegradation of CdS particles deposited onto TiO2 mesoporous films by SILAR method. J. Nanopart. Res. 14, 1140–1153 (2012)

    Article  CAS  Google Scholar 

  119. Besson, S., Gacoin, T., Ricolleau, C., Jacquiod, C., Boilot, J.-P.: 3D quantum dot lattice inside mesoporous silica films. Nano Lett. 2, 409–414 (2002)

    Article  CAS  Google Scholar 

  120. Lippens, P., Lannoo, M.: Calculation of the band gap for small CdS and ZnS crystallites. Phys. Rev. B. 39, 10935–10942 (1989)

    Article  CAS  Google Scholar 

  121. Wang, Y., Herron, N.: Quantum size effects on the exciton energy of CdS clusters. Phys. Rev. B. 42, 7253–7255 (1990)

    Article  CAS  Google Scholar 

  122. Wang, Y., Suna, A., Mahler, W., Kasowski, R.: PbS in polymers. From molecules to bulk solids. J. Chem. Phys. 87, 7315–7322 (1987)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Wojcieszak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Simon, P., Baldovino-Medrano, V.G., Wojcieszak, R. (2022). X-Ray Photoelectron Spectroscopy (XPS): Principles and Application for the Analysis of Photoactive Materials. In: Bahnemann, D., Patrocinio, A.O.T. (eds) Springer Handbook of Inorganic Photochemistry. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-63713-2_10

Download citation

Publish with us

Policies and ethics