Skip to main content

Advertisement

Log in

The Impact of Fat and Obesity on Bone Microarchitecture and Strength in Children

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

A complex interplay of genetic, environmental, hormonal, and behavioral factors affect skeletal development, several of which are associated with childhood fractures. Given the rise in obesity worldwide, it is of particular concern that excess fat accumulation during childhood appears to be a risk factor for fractures. Plausible explanations for this higher fracture risk include a greater propensity for falls, greater force generation upon fall impact, unhealthy lifestyle habits, and excessive adipose tissue that may have direct or indirect detrimental effects on skeletal development. To date, there remains little resolution or agreement about the impact of obesity and adiposity on skeletal development as well as the mechanisms underpinning these changes. Limitations of imaging modalities, short duration of follow-up in longitudinal studies, and differences among cohorts examined may all contribute to conflicting results. Nonetheless, a linear relationship between increasing adiposity and skeletal development seems unlikely. Fat mass may confer advantages to the developing cortical and trabecular bone compartments, provided that gains in fat mass are not excessive. However, when fat mass accumulation reaches excessive levels, unfavorable metabolic changes may impede skeletal development. Mechanisms underpinning these changes may relate to changes in the hormonal milieu, with adipokines potentially playing a central role, but again findings have been confounding. Changes in the relationship between fat and bone also appear to be age and sex dependent. Clearly, more work is needed to better understand the controversial impact of fat and obesity on skeletal development and fracture risk during childhood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heaney RP, Abrams S, Dawson-Hughes B, Looker A, Marcus R, Matkovic V, Weaver C (2000) Peak bone mass. Osteoporos Int 11:985–1009

    Article  CAS  PubMed  Google Scholar 

  2. Robling AG, Castillo AB, Turner CH (2006) Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng 8:455–498

    Article  CAS  PubMed  Google Scholar 

  3. Wang Q, Cheng S, Alen M, Seeman E (2009) Bone’s structural diversity in adult females is established before puberty. J Clin Endocrinol Metab 94:1555–1561

    Article  CAS  PubMed  Google Scholar 

  4. Chavassieux P, Seeman E, Delmas PD (2007) Insights into material and structural basis of bone fragility from diseases associated with fractures: how determinants of the biomechanical properties of bone are compromised by disease. Endocr Rev 28:151–164

    Article  CAS  PubMed  Google Scholar 

  5. Wang Y, Lobstein T (2006) Worldwide trends in childhood overweight and obesity. Int J Pediatr Obes 1:11–25

    Article  PubMed  Google Scholar 

  6. Lobstein T, Jackson-Leach R, Moodie ML, Hall KD, Gortmaker SL, Swinburn BA, James WP, Wang Y, McPherson K (2015) Child and adolescent obesity: part of a bigger picture. Lancet 385:2510–2520

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ogden CL, Carroll MD, Lawman HG, Fryar CD, Kruszon-Moran D, Kit BK, Flegal KM (2016) Trends in obesity prevalence among children and adolescents in the United States, 1988–1994 through 2013–2014. JAMA 315:2292–2299

    Article  CAS  PubMed  Google Scholar 

  8. Goulding A, Cannan R, Williams SM, Gold EJ, Taylor RW, Lewis-Barned NJ (1998) Bone mineral density in girls with forearm fractures. J Bone Miner Res 13:143–148

    Article  CAS  PubMed  Google Scholar 

  9. Goulding A, Jones L, Taylor RW, Manning PJ, Williams SM (2000) More broken bones: a 4-year double cohort study of young girls with and without distal forearm fractures. J Bone Miner Res 15:2011–2018

    Article  CAS  PubMed  Google Scholar 

  10. Skaggs DL, Loro ML, Pitukcheewanont P, Tolo V, Gilsanz V (2001) Increased body weight and decreased radial cross-sectional dimensions in girls with forearm fractures. J Bone Miner Res 16:1337–1342

    Article  CAS  PubMed  Google Scholar 

  11. Goulding A, Jones IE, Taylor RW, Williams SM, Manning PJ (2001) Bone mineral density and body composition in boys with distal forearm fractures: a dual-energy X-ray absorptiometry study. J Pediatr 139:509–515

    Article  CAS  PubMed  Google Scholar 

  12. Davidson PL, Goulding A, Chalmers DJ (2003) Biomechanical analysis of arm fracture in obese boys. J Paediatr Child Health 39:657–664

    Article  CAS  PubMed  Google Scholar 

  13. Goulding A, Grant AM, Williams SM (2005) Bone and body composition of children and adolescents with repeated forearm fractures. J Bone Miner Res 20:2090–2096

    Article  PubMed  Google Scholar 

  14. Taylor ED, Theim KR, Mirch MC, Ghorbani S, Tanofsky-Kraff M, Adler-Wailes DC, Brady S, Reynolds JC, Calis KA, Yanovski JA (2006) Orthopedic complications of overweight in children and adolescents. Pediatrics 117:2167–2174

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dimitri P, Wales JK, Bishop N (2010) Fat and bone in children: differential effects of obesity on bone size and mass according to fracture history. J Bone Miner Res 25:527–536

    Article  PubMed  Google Scholar 

  16. Kessler J, Koebnick C, Smith N, Adams A (2013) Childhood obesity is associated with increased risk of most lower extremity fractures. Clin Orthop Relat Res 471:1199–1207

    Article  PubMed  Google Scholar 

  17. Fornari ED, Suszter M, Roocroft J, Bastrom T, Edmonds EW, Schlechter J (2013) Childhood obesity as a risk factor for lateral condyle fractures over supracondylar humerus fractures. Clin Orthop Relat Res 471:1193–1198

    Article  PubMed  Google Scholar 

  18. Sabhaney V, Boutis K, Yang G, Barra L, Tripathi R, Tran TT, Doan Q (2014) Bone fractures in children: is there an association with obesity? J Pediatr 165(313–318):e311

    Google Scholar 

  19. Rosen CJ, Klibanski A (2009) Bone, fat, and body composition: evolving concepts in the pathogenesis of osteoporosis. Am J Med 122:409–414

    Article  CAS  PubMed  Google Scholar 

  20. Kawai M, de Paula FJ, Rosen CJ (2012) New insights into osteoporosis: the bone-fat connection. J Intern Med 272:317–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dimitri P, Bishop N, Walsh JS, Eastell R (2012) Obesity is a risk factor for fracture in children but is protective against fracture in adults: a paradox. Bone 50:457–466

    Article  CAS  PubMed  Google Scholar 

  22. Kontulainen SA, Johnston JD, Liu D, Leung C, Oxland TR, McKay HA (2008) Strength indices from pQCT imaging predict up to 85% of variance in bone failure properties at tibial epiphysis and diaphysis. J Musculoskelet Neuronal Interact 8:401–409

    CAS  PubMed  Google Scholar 

  23. Kirmani S, Christen D, van Lenthe GH, Fischer PR, Bouxsein ML, McCready LK, Melton LJ 3rd, Riggs BL, Amin S, Muller R, Khosla S (2009) Bone structure at the distal radius during adolescent growth. J Bone Miner Res 24:1033–1042

    Article  PubMed  Google Scholar 

  24. Nishiyama KK, Macdonald HM, Moore SA, Fung T, Boyde SK, McKay HA (2012) Cortical porosity is higher in boys compared with girls at the distal radius and distal tibia during pubertal growth: an HR-pQCT study. J Bone Miner Res 27:273–282

    Article  PubMed  Google Scholar 

  25. Farr JN, Amin S, Melton LJ 3rd, Kirmani S, McCready LK, Atkinson EJ, Muller R, Khosla S (2014) Bone strength and structural deficits in children and adolescents with a distal forearm fracture resulting from mild trauma. J Bone Miner Res 29:590–599

    Article  PubMed  PubMed Central  Google Scholar 

  26. Goulding A (2007) Risk factors for fractures in normally active children and adolescents. In: Daily RM, Petit MA (eds) Optimizing bone mass and strength: the role of physical activity and nutrition during growth. Karger, Basel, pp 102–120

    Chapter  Google Scholar 

  27. Landin LA (1983) Fracture patterns in children. Analysis of 8682 fractures with special reference to incidence, etiology and secular changes in a Swedish urban population 1950–1979. Acta Orthop Scand Suppl 202:1–109

    Article  CAS  PubMed  Google Scholar 

  28. Bailey DA, Wedge JH, McCulloch RG, Martin AD, Bernhardson SC (1989) Epidemiology of fractures of the distal end of the radius in children as associated with growth. J Bone Joint Surg 71-A:1225–1231

    Article  Google Scholar 

  29. Khosla S, Melton LJ III, Dekutoski MB, Achenbach SJ, Oberg AL, Riggs BL (2003) Incidence of childhood distal forearm fractures over 30 years: a population-based study. JAMA 290:1479–1485

    Article  CAS  PubMed  Google Scholar 

  30. Mora S, Gilsanz V (2003) Establishment of peak bone mass. Endocrinol Metab Clin North Am 32:39–63

    Article  PubMed  Google Scholar 

  31. Willing MC, Torner JC, Burns TL, Janz KF, Marshall T, Gilmore J, Deschenes SP, Warren JJ, Levy SM (2003) Gene polymorphisms, bone mineral density and bone mineral content in young children: the Iowa Bone Development Study. Osteoporos Int 14:650–658

    Article  CAS  PubMed  Google Scholar 

  32. Laitinen J, Kiukaanniemi K, Heikkinen J, Koiranen M, Nieminen P, Sovio U, Keinanen-Kiukaanniemi S, Jarvelin MR (2005) Body size from birth to adulthood and bone mineral content and density at 31 years of age: results form the northern Finland 1966 birth cohort study. Osteoporos Int 16:1417–1424

    Article  CAS  PubMed  Google Scholar 

  33. Veldhuis JD, Roemmich JN, Richmond EJ, Rogol AD, Lovejoy JC, Sheffield-Moore M, Mauras N, Bowers CY (2005) Endocrine control of body composition in infancy, childhood, and puberty. Endocr Rev 26:114–146

    Article  CAS  PubMed  Google Scholar 

  34. Petridou E, Karpathios T, Dessypris N, Simou E, Trichopoulos D (1997) The role of dairy products and non alcoholic beverages in bone fractures among schoolage children. Scand J Soc Med 25:119–125

    CAS  PubMed  Google Scholar 

  35. Cromer B, Harel Z (2000) Adolescents: at increased risk for osteoporosis? Clin Pediatr (Phila) 39:565–574

    Article  CAS  Google Scholar 

  36. Ma D, Jones G (2003) Television, computer, and video viewing; physical activity; and upper limb fracture risk in children: a population-based case control study. J Bone Miner Res 18:1970–1977

    Article  PubMed  Google Scholar 

  37. Ma D, Jones G (2004) Soft drink and milk consumption, physical activity, bone mass, and upper limb fractures in children: a population-based case-control study. Calcif Tissue Int 75:286–291

    Article  CAS  PubMed  Google Scholar 

  38. Jones IE, Williams SM, Goulding A (2004) Associations of birth weight and length, childhood size, and smoking with bone fractures during growth: evidence from a birth cohort study. Am J Epidemiol 159:343–350

    Article  PubMed  Google Scholar 

  39. Manias K, McCabe D, Bishop N (2006) Fractures and recurrent fractures in children; varying effects of environmental factors as well as bone size and mass. Bone 39:652–657

    Article  PubMed  Google Scholar 

  40. Yeh FJ, Grant AM, Williams SM, Goulding A (2006) Children who experience their first fracture at a young age have high rates of fracture. Osteoporos Int 17:267–272

    Article  PubMed  Google Scholar 

  41. Clark EM, Tobias JH, Ness AR (2006) Association between bone density and fractures in children: a systematic review and meta-analysis. Pediatrics 117:291–297

    Article  Google Scholar 

  42. Bishop N, Arundel P, Clark E, Dimitri P, Farr J, Jones G, Makitie O, Munns CF, Shaw N (2014) Fracture prediction and the definition of osteoporosis in children and adolescents: the ISCD 2013 Pediatric Official Positions. J Clin Densitom 17:275–280

    Article  PubMed  Google Scholar 

  43. Wang Q, Wang XF, Iuliano-Burns S, Ghasem-Zadeh A, Zebaze R, Seeman E (2010) Rapid growth produces transient cortical weakness: a risk factor for metaphyseal fractures during puberty. J Bone Miner Res 25:1521–1526

    Article  PubMed  Google Scholar 

  44. Parfitt AM (1994) The two faces of growth: benefits and risks to bone integrity. Osteoporos Int 4:382–398

    Article  CAS  PubMed  Google Scholar 

  45. Rauch F, Neu C, Manz F, Schoenau E (2001) The development of metaphyseal cortex–implications for distal radius fractures during growth. J Bone Miner Res 16:1547–1555

    Article  CAS  PubMed  Google Scholar 

  46. Hernandez CJ, Beaupre’ GS, Carter DR (2003) A theoretical analysis of the relative influences of peak BMD, age-related bone loss and menopause on the development of osteoporosis. Osteoporos Int 14:843–847

    Article  CAS  PubMed  Google Scholar 

  47. Havill LM, Mahaney MC, Binkley TL, Specker BL (2007) Effects of genes, sex, age, and activity on BMC, bone size, and areal and volumetric BMD. J Bone Miner Res 22:737–746

    Article  PubMed  Google Scholar 

  48. Johnson W, Stovitz SD, Choh AC, Czerwinski SA, Towne B, Demerath EW (2012) Patterns of linear growth and skeletal maturation from birth to 18 years of age in overweight young adults. Int J Obes (Lond) 36:535–541

    Article  CAS  Google Scholar 

  49. Goulding A, Jones IE, Taylor RW, Piggot JM, Taylor D (2003) Dynamic and static tests of balance and postural sway in boys: effects of previous wrist bone fractures and high adiposity. Gait Posture 17:136–141

    Article  CAS  PubMed  Google Scholar 

  50. Frost HM (1997) Obesity, and bone strength and “mass”: a tutorial based on insights from a new paradigm. Bone 21:211–214

    Article  CAS  PubMed  Google Scholar 

  51. Pollock NK (2015) Childhood obesity, bone development, and cardiometabolic risk factors. Mol Cell Endocrinol 410:52–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Loder RT, Aronson DD, Greenfield ML (1993) The epidemiology of bilateral slipped capital femoral epiphysis. A study of children in Michigan. J Bone Joint Surg Am 75:1141–1147

    Article  CAS  PubMed  Google Scholar 

  53. Davids JR, Huskamp M, Bagley AM (1996) A dynamic biomechanical analysis of the etiology of adolescent tibia vara. J Pediatr Orthop 16:461–468

    Article  CAS  PubMed  Google Scholar 

  54. Leonard MB, Shults J, Wilson BA, Tershakovec AM, Zemel BS (2004) Obesity during childhood and adolescence augments bone mass and bone dimensions. Am J Clin Nutr 80:514–523

    CAS  PubMed  Google Scholar 

  55. Clark EM, Ness AR, Tobias JH (2006) Adipose tissue stimulates bone growth in prepubertal children. J Clin Endocrinol Metab 91:2534–2541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Goulding A, Taylor RW, Jones IE, McAuley KA, Manning PJ, Williams SM (2000) Overweight and obese children have low bone mass and area for their weight. Int J Obes Relat Metab Disord 24:627–632

    Article  CAS  PubMed  Google Scholar 

  57. Weiler HA, Janzen L, Green K, Grabowski J, Seshia MM, Yuen KC (2000) Percent body fat and bone mass in healthy Canadian females 10 to 19 years of age. Bone 27:203–207

    Article  CAS  PubMed  Google Scholar 

  58. Manzoni P, Brambilla P, Pietrobelli A, Beccaria L, Bianchessi A, Mora S, Chiumello G (1996) Influence of body composition on bone mineral content in children and adolescents. Am J Clin Nutr 64:603–607

    CAS  PubMed  Google Scholar 

  59. Petit MA, Beck TJ, Shults J, Zemel BS, Foster BJ, Leonard MB (2005) Proximal femur bone geometry is appropriately adapted to lean mass in overweight children and adolescents. Bone 36:568–576

    Article  PubMed  Google Scholar 

  60. Bachrach LK (2004) Bare-bones fact: children are not small adults. N Engl J Med 351:924–926

    Article  CAS  PubMed  Google Scholar 

  61. Bachrach LK (2006) Measuring bone mass in children: can we really do it? Horm Res 65:11–16

    Article  CAS  PubMed  Google Scholar 

  62. Janicka A, Wren TA, Sanchez MM, Dorey F, Kim PS, Mittelman SD, Gilsanz V (2007) Fat mass is not beneficial to bone in adolescents and young adults. J Clin Endocrinol Metab 92:143–147

    Article  CAS  PubMed  Google Scholar 

  63. Pollock NK, Laing EM, Baile CA, Hamrick MW, Hall DB, Lewis RD (2007) Is adiposity advantageous for bone strength? A peripheral quantitative computed tomography study in late adolescent females. Am J Clin Nutr 86:1530–1538

    CAS  PubMed  Google Scholar 

  64. Wetzsteon RJ, Petit MA, Macdonald HM, Hughes JM, Beck TJ, McKay HA (2008) Bone structure and volumetric BMD in overweight children: a longitudinal study. J Bone Miner Res 23:1946–1953

    Article  PubMed  Google Scholar 

  65. Farr JN, Chen Z, Lisse JR, Lohman TG, Going SB (2010) Relationship of total body fat mass to weight-bearing bone volumetric density, geometry, and strength in young girls. Bone 46:977–984

    Article  PubMed  PubMed Central  Google Scholar 

  66. Brotto M, Bonewald L (2015) Bone and muscle: interactions beyond mechanical. Bone 80:109–114

    Article  PubMed  PubMed Central  Google Scholar 

  67. Farr JN, Amin S, LeBrasseur NK, Atkinson EJ, Achenbach SJ, McCready LK, Joseph Melton L, Khosla S 3rd (2014) Body composition during childhood and adolescence: relations to bone strength and microstructure. J Clin Endocrinol Metab 99:4641–4648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wey HE, Binkley TL, Beare TM, Wey CL, Specker BL (2011) Cross-sectional versus longitudinal associations of lean and fat mass with pQCT bone outcomes in children. J Clin Endocrinol Metab 96:106–114

    Article  CAS  PubMed  Google Scholar 

  69. Wren TA, Kalkwarf HJ, Zemel BS, Lappe JM, Oberfield S, Shepherd JA, Winer KK, Gilsanz V (2014) Longitudinal tracking of dual-energy X-ray absorptiometry bone measures over 6 years in children and adolescents: persistence of low bone mass to maturity. J Pediatr 164(1280–1285):e1282

    Google Scholar 

  70. Foley S, Quinn S, Jones G (2009) Tracking of bone mass from childhood to adolescence and factors that predict deviation from tracking. Bone 44:752–757

    Article  PubMed  Google Scholar 

  71. Laddu DR, Farr JN, Laudermilk MJ, Lee VR, Blew RM, Stump C, Houtkooper L, Lohman TG, Going SB (2013) Longitudinal relationships between whole body and central adiposity on weight-bearing bone geometry, density, and bone strength: a pQCT study in young girls. Arch Osteoporos 8:156

    Article  PubMed  PubMed Central  Google Scholar 

  72. Moon RJ, Cole ZA, Crozier SR, Curtis EM, Davies JH, Gregson CL, Robinson SM, Dennison EM, Godfrey KM, Inskip HM, Cooper C, Harvey NC (2015) Longitudinal changes in lean mass predict pQCT measures of tibial geometry and mineralisation at 6–7 years. Bone 75:105–110

    Article  PubMed  PubMed Central  Google Scholar 

  73. Dalskov S, Ritz C, Larnkjaer A, Damsgaard CT, Petersen RA, Sorensen LB, Ong KK, Astrup A, Michaelsen KF, Molgaard C (2016) Associations between adiposity, hormones, and gains in height, whole-body height-adjusted bone size, and size-adjusted bone mineral content in 8- to 11-year-old children. Osteoporos Int 27:1619–1629

    Article  CAS  PubMed  Google Scholar 

  74. Heidemann M, Holst R, Schou AJ, Klakk H, Husby S, Wedderkopp N, Molgaard C (2015) The influence of anthropometry and body composition on children’s bone health: the childhood health, activity and motor performance school (the CHAMPS) study, Denmark. Calcif Tissue Int 96:97–104

    Article  CAS  PubMed  Google Scholar 

  75. Sudhagoni RG, Wey HE, Djira GD, Specker BL (2012) Longitudinal effects of fat and lean mass on bone accrual in infants. Bone 50:638–642

    Article  PubMed  Google Scholar 

  76. Sayers A, Marcus M, Rubin C, McGeehin MA, Tobias JH (2010) Investigation of sex differences in hip structure in peripubertal children. J Clin Endocrinol Metab 95:3876–3883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Burrows M, Baxter-Jones A, Mirwald R, Macdonald H, McKay H (2009) Bone mineral accrual across growth in a mixed-ethnic group of children: are Asian children disadvantaged from an early age? Calcif Tissue Int 84:366–378

    Article  CAS  PubMed  Google Scholar 

  78. Wosje KS, Khoury PR, Claytor RP, Copeland KA, Kalkwarf HJ, Daniels SR (2009) Adiposity and TV viewing are related to less bone accrual in young children. J Pediatr 154(79–85):e72

    Google Scholar 

  79. Jones IE, Taylor RW, Williams SM, Manning PJ, Goulding A (2002) Four-year gain in bone mineral in girls with and without past forearm fractures: a DXA study. J Bone Miner Res 17:1065–1072

    Article  PubMed  Google Scholar 

  80. Koster A, Stenholm S, Alley DE, Kim LJ, Simonsick EM, Kanaya AM, Visser M, Houston DK, Nicklas BJ, Tylavsky FA, Satterfield S, Goodpaster BH, Ferrucci L, Harris TB (2010) Body fat distribution and inflammation among obese older adults with and without metabolic syndrome. Obesity (Silver Spring) 18:2354–2361

    Article  CAS  Google Scholar 

  81. Shah RV, Murthy VL, Abbasi SA, Blankstein R, Kwong RY, Goldfine AB, Jerosch-Herold M, Lima JA, Ding J, Allison MA (2014) Visceral adiposity and the risk of metabolic syndrome across body mass index: the MESA Study. JACC Cardiovasc Imaging 7:1221–1235

    Article  PubMed  PubMed Central  Google Scholar 

  82. Gilsanz V, Chalfant J, Mo AO, Lee DC, Dorey FJ, Mittelman SD (2009) Reciprocal relations of subcutaneous and visceral fat to bone structure and strength. J Clin Endocrinol Metab 94:3387–3393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Russell M, Mendes N, Miller KK, Rosen CJ, Lee H, Klibanski A, Misra M (2010) Visceral fat is a negative predictor of bone density measures in obese adolescent girls. J Clin Endocrinol Metab 95:1247–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pollock NK, Bernard PJ, Wenger K, Misra S, Gower BA, Allison JD, Zhu H, Davis CL (2010) Lower bone mass in prepubertal overweight children with prediabetes. J Bone Miner Res 25:2760–2769

    Article  PubMed  PubMed Central  Google Scholar 

  85. Sugerman HJ, Sugerman EL, DeMaria EJ, Kellum JM, Kennedy C, Mowery Y, Wolfe LG (2003) Bariatric surgery for severely obese adolescents. J Gastrointest Surg 7:102–107; discussion 107–108

  86. Collins J, Mattar S, Qureshi F, Warman J, Ramanathan R, Schauer P, Eid G (2007) Initial outcomes of laparoscopic Roux-en-Y gastric bypass in morbidly obese adolescents. Surg Obes Relat Dis 3:147–152

    Article  PubMed  Google Scholar 

  87. Inge T, Wilson KA, Gamm K, Kirk S, Garcia VF, Daniels SR (2007) Preferential loss of central (trunk) adiposity in adolescents and young adults after laparoscopic gastric bypass. Surg Obes Relat Dis 3:153–158

    Article  PubMed  Google Scholar 

  88. Mahdy T, Atia S, Farid M, Adulatif A (2008) Effect of Roux-en Y gastric bypass on bone metabolism in patients with morbid obesity: mansoura experiences. Obes Surg 18:1526–1531

    Article  PubMed  Google Scholar 

  89. von Mach MA, Stoeckli R, Bilz S, Kraenzlin M, Langer I, Keller U (2004) Changes in bone mineral content after surgical treatment of morbid obesity. Metabolism 53:918–921

    Article  CAS  Google Scholar 

  90. Duran de Campos C, Dalcanale L, Pajecki D, Garrido AB Jr, Halpern A (2008) Calcium intake and metabolic bone disease after eight years of Roux-en-Y gastric bypass. Obes Surg 18:386–390

    Article  PubMed  Google Scholar 

  91. Fleischer J, Stein EM, Bessler M, Della Badia M, Restuccia N, Olivero-Rivera L, McMahon DJ, Silverberg SJ (2008) The decline in hip bone density after gastric bypass surgery is associated with extent of weight loss. J Clin Endocrinol Metab 93:3735–3740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Brzozowska MM, Sainsbury A, Eisman JA, Baldock PA, Center JR (2013) Bariatric surgery, bone loss, obesity and possible mechanisms. Obes Rev 14:52–67

    Article  CAS  PubMed  Google Scholar 

  93. Yu EW, Bouxsein ML, Putman MS, Monis EL, Roy AE, Pratt JS, Butsch WS, Finkelstein JS (2015) Two-year changes in bone density after Roux-en-Y gastric bypass surgery. J Clin Endocrinol Metab 100:1452–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Frederiksen KD, Hanson S, Hansen S, Brixen K, Gram J, Jorgensen NR, Stoving RK (2016) Bone structural changes and estimated strength after gastric bypass surgery evaluated by HR-pQCT. Calcif Tissue Int 98:253–262

    Article  CAS  PubMed  Google Scholar 

  95. Stein EM, Silverberg SJ (2014) Bone loss after bariatric surgery: causes, consequences, and management. Lancet Diabetes Endocrinol 2:165–174

    Article  PubMed  PubMed Central  Google Scholar 

  96. Lu CW, Chang YK, Chang HH, Kuo CS, Huang CT, Hsu CC, Huang KC (2015) Fracture risk after bariatric surgery: a 12-year nationwide cohort study. Medicine (Baltimore) 94:e2087

    Article  Google Scholar 

  97. Nakamura KM, Haglind EG, Clowes JA, Achenbach SJ, Atkinson EJ, Melton LJ 3rd, Kennel KA (2014) Fracture risk following bariatric surgery: a population-based study. Osteoporos Int 25:151–158

    Article  CAS  PubMed  Google Scholar 

  98. Lalmohamed A, de Vries F, Bazelier MT, Cooper A, van Staa TP, Cooper C, Harvey NC (2012) Risk of fracture after bariatric surgery in the United Kingdom: population based, retrospective cohort study. BMJ 345:e5085

    Article  PubMed  PubMed Central  Google Scholar 

  99. Johnson JM, Maher JW, Samuel I, Heitshusen D, Doherty C, Downs RW (2005) Effects of gastric bypass procedures on bone mineral density, calcium, parathyroid hormone, and vitamin D. J Gastrointest Surg 9:1106–1110; discussion 1110–1101

  100. Chakhtoura MT, Nakhoul NN, Shawwa K, Mantzoros C, El Hajj Fuleihan GA (2016) Hypovitaminosis D in bariatric surgery: a systematic review of observational studies. Metabolism 65:574–585

    Article  CAS  PubMed  Google Scholar 

  101. Chakhtoura MT, Nakhoul N, Akl EA, Mantzoros CS, El Hajj Fuleihan GA (2016) Guidelines on vitamin D replacement in bariatric surgery: identification and systematic appraisal. Metabolism 65:586–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Beamish AJ, Gronowitz E, Olbers T, Flodmark CE, Marcus C, Dahlgren J (2016) Body composition and bone health in adolescents after Roux-en-Y gastric bypass for severe obesity. Pediatr Obes. doi:10.1111/ijpo.12134

    PubMed  Google Scholar 

  103. Kaulfers AM, Bean JA, Inge TH, Dolan LM, Kalkwarf HJ (2011) Bone loss in adolescents after bariatric surgery. Pediatrics 127:e956–e961

    Article  PubMed  PubMed Central  Google Scholar 

  104. Duckham RL, Rantalainen T, Ducher G, Hill B, Telford RD, Telford RM, Daly RM (2016) Effects of habitual physical activity and fitness on tibial cortical bone mass, structure and mass distribution in pre-pubertal boys and girls: the look study. Calcif Tissue Int 99(1):56–65. doi:10.1007/s00223-016-0128-4

    Article  CAS  PubMed  Google Scholar 

  105. Fritz J, Rosengren BE, Dencker M, Karlsson C, Karlsson MK (2016) A seven-year physical activity intervention for children increased gains in bone mass and muscle strength. Acta Paediatr 105(10):1216–1224. doi:10.1111/apa.13440

    Article  PubMed  Google Scholar 

  106. Burrows M (2007) Exercise and bone mineral accrual in children and adolescents. J Sports Sci Med 6:305–312

    PubMed  PubMed Central  Google Scholar 

  107. Klentrou P (2016) Influence of exercise and training on critical stages of bone growth and development. Pediatr Exerc Sci 28:178–186

    Article  PubMed  Google Scholar 

  108. Miller KK, Biller BM, Lipman JG, Bradwin G, Rifai N, Klibanski A (2005) Truncal adiposity, relative growth hormone deficiency, and cardiovascular risk. J Clin Endocrinol Metab 90:768–774

    Article  CAS  PubMed  Google Scholar 

  109. Misra M, Bredella MA, Tsai P, Mendes N, Miller KK, Klibanski A (2008) Lower growth hormone and higher cortisol are associated with greater visceral adiposity, intramyocellular lipids, and insulin resistance in overweight girls. Am J Physiol Endocrinol Metab 295:E385–E392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Brick DJ, Gerweck AV, Meenaghan E, Lawson EA, Misra M, Fazeli P, Johnson W, Klibanski A, Miller KK (2010) Determinants of IGF1 and GH across the weight spectrum: from anorexia nervosa to obesity. Eur J Endocrinol 163:185–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Palmer G, Bonjour JP, Caverzasio J (1996) Stimulation of inorganic phosphate transport by insulin-like growth factor I and vanadate in opossum kidney cells is mediated by distinct protein tyrosine phosphorylation processes. Endocrinology 137:4699–4705

    CAS  PubMed  Google Scholar 

  112. Ammann P, Bourrin S, Bonjour J, Meyer J, Rizzoli R (2000) Protein undernutrition-induced bone loss is associated with decreased IGF-I levels and estrogen deficiency. J Bone Miner Res 15:683–690

    Article  CAS  PubMed  Google Scholar 

  113. Bonjour JP (2016) The dietary protein, IGF-I, skeletal health axis. Horm Mol Biol Clin Investig 28(1):39–53. doi:10.1515/hmbci-2016-0003

    CAS  PubMed  Google Scholar 

  114. Abu EO, Horner A, Kusec V, Triffitt JT, Compston JE (1997) The localization of androgen receptors in human bone. J Clin Endocrinol Metab 82:3493–3497

    Article  CAS  PubMed  Google Scholar 

  115. Kasperk CH, Wakley GK, Hierl T, Ziegler (1997) Gonadal and adrenal androgens are potent regulators of human bone cell metabolism in vitro. J Bone Miner Res 12:464–471

    Article  CAS  PubMed  Google Scholar 

  116. Clarke BL, Khosla S (2009) Androgens and bone. Steroids 74:296–305

    Article  CAS  PubMed  Google Scholar 

  117. Kasperk C, Helmboldt A, Borcsok I, Heuthe S, Cloos O, Niethard F, Ziegler R (1997) Skeletal site-dependent expression of the androgen receptor in human osteoblastic cell populations. Calcif Tissue Int 61:464–473

    Article  CAS  PubMed  Google Scholar 

  118. Bellido T, Jilka RL, Boyce BF, Girasole G, Broxmeyer H, Dalrymple SA, Murray R, Manolagas SC (1995) Regulation of interleukin-6, osteoclastogenesis, and bone mass by androgens: the role of the androgen receptor. J Clin Invest 95:2886–2895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Reinehr T, de Sousa G, Roth CL, Andler W (2005) Androgens before and after weight loss in obese children. J Clin Endocrinol Metab 90:5588–5595

    Article  CAS  PubMed  Google Scholar 

  120. Thrailkill KM, Liu L, Wahl EC, Bunn RC, Perrien DS, Cockrell GE, Skinner RA, Hogue WR, Carver AA, Fowlkes JL, Aronson J, Lumpkin CK Jr (2005) Bone formation is impaired in a model of type 1 diabetes. Diabetes 54:2875–2881

    Article  CAS  PubMed  Google Scholar 

  121. Verhaeghe J, Suiker AM, Visser WJ, Van Herck E, Van Bree R, Bouillon R (1992) The effects of systemic insulin, insulin-like growth factor-I and growth hormone on bone growth and turnover in spontaneously diabetic BB rats. J Endocrinol 134:485–492

    Article  CAS  PubMed  Google Scholar 

  122. Farr JN, Drake MT, Amin S, Melton LJ 3rd, McCready LK, Khosla S (2014) In vivo assessment of bone quality in postmenopausal women with type 2 diabetes. J Bone Miner Res 29:787–795

    Article  PubMed  PubMed Central  Google Scholar 

  123. Furst JR, Bandeira LC, Fan WW, Agarwal S, Nishiyama KK, McMahon DJ, Dworakowski E, Jiang H, Silverberg SJ, Rubin MR (2016) Advanced glycation endproducts and bone material strength in type 2 diabetes. J Clin Endocrinol Metab jc20161437

  124. Thomas T, Gori F, Khosla S, Jensen MD, Burguera B, Riggs BL (1999) Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 140:1630–1638

    CAS  PubMed  Google Scholar 

  125. Holloway WR, Collier FM, Aitken CJ, Myers DE, Hodge JM, Malakellis M, Gough TJ, Collier GR, Nicholson GC (2002) Leptin inhibits osteoclast generation. J Bone Miner Res 17:200–209

    Article  CAS  PubMed  Google Scholar 

  126. Martin A, David V, Malaval L, Lafage-Proust MH, Vico L, Thomas T (2007) Opposite effects of leptin on bone metabolism: a dose-dependent balance related to energy intake and insulin-like growth factor-I pathway. Endocrinology 148:3419–3425

    Article  CAS  PubMed  Google Scholar 

  127. Afghani A, Goran MI (2009) The interrelationships between abdominal adiposity, leptin and bone mineral content in overweight Latino children. Horm Res 72:82–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Dimitri P, Wales JK, Bishop N (2011) Adipokines, bone-derived factors and bone turnover in obese children; evidence for altered fat-bone signalling resulting in reduced bone mass. Bone 48:189–196

    Article  CAS  PubMed  Google Scholar 

  129. Dimitri P, Jacques RM, Paggiosi M, King D, Walsh J, Taylor ZA, Frangi AF, Bishop N, Eastell R (2015) Leptin may play a role in bone microstructural alterations in obese children. J Clin Endocrinol Metab 100:594–602

    Article  CAS  PubMed  Google Scholar 

  130. Roemmich JN, Clark PA, Mantzoros CS, Gurgol CM, Weltman A, Rogol AD (2003) Relationship of leptin to bone mineralization in children and adolescents. J Clin Endocrinol Metab 88:599–604

    Article  CAS  PubMed  Google Scholar 

  131. Garnett SP, Hogler W, Blades B, Baur LA, Peat J, Lee J, Cowell CT (2004) Relation between hormones and body composition, including bone, in prepubertal children. Am J Clin Nutr 80:966–972

    CAS  PubMed  Google Scholar 

  132. Huang KC, Cheng WC, Yen RF, Tsai KS, Tai TY, Yang WS (2004) Lack of independent relationship between plasma adiponectin, leptin levels and bone density in nondiabetic female adolescents. Clin Endocrinol (Oxf) 61:204–208

    Article  CAS  Google Scholar 

  133. Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, Sewter CP, Digby JE, Mohammed SN, Hurst JA, Cheetham CH, Earley AR, Barnett AH, Prins JB, O’Rahilly S (1997) Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387:903–908

    Article  CAS  PubMed  Google Scholar 

  134. Farooqi IS, Jebb SA, Langmack G, Lawrence E, Cheetham CH, Prentice AM, Hughes IA, McCamish MA, O’Rahilly S (1999) Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med 341:879–884

    Article  CAS  PubMed  Google Scholar 

  135. Hannema SE, Wit JM, Houdijk ME, van Haeringen A, Bik EC, Verkerk AJ, Uitterlinden AG, Kant SG, Oostdijk W, Bakker E, Delemarre-van de Waal HA, Losekoot M (2016) Novel leptin receptor mutations identified in two girls with severe obesity are associated with increased bone mineral density. Horm Res Paediatr 85(6):412–420. doi:10.1159/000444055

    Article  CAS  PubMed  Google Scholar 

  136. Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, Armstrong D, Ducy P, Karsenty G (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111:305–317

    Article  CAS  PubMed  Google Scholar 

  137. Elefteriou F, Takeda S, Ebihara K, Magre J, Patano N, Kim CA, Ogawa Y, Liu X, Ware SM, Craigen WJ, Robert JJ, Vinson C, Nakao K, Capeau J, Karsenty G (2004) Serum leptin level is a regulator of bone mass. Proc Natl Acad Sci USA 101:3258–3263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X, Kondo H, Richards WG, Bannon TW, Noda M, Clement K, Vaisse C, Karsenty G (2005) Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434:514–520

    Article  CAS  PubMed  Google Scholar 

  139. Ealey KN, Archer MC (2009) Elevated circulating adiponectin and elevated insulin sensitivity in adiponectin transgenic mice are not associated with reduced susceptibility to colon carcinogenesis. Int J Cancer 124:2226–2230

    Article  CAS  PubMed  Google Scholar 

  140. Lenchik L, Register TC, Hsu FC, Lohman K, Nicklas BJ, Freedman BI, Langefeld CD, Carr JJ, Bowden DW (2003) Adiponectin as a novel determinant of bone mineral density and visceral fat. Bone 33:646–651

    Article  CAS  PubMed  Google Scholar 

  141. Richards JB, Valdes AM, Burling K, Perks UC, Spector TD (2007) Serum adiponectin and bone mineral density in women. J Clin Endocrinol Metab 92:1517–1523

    Article  CAS  PubMed  Google Scholar 

  142. Johansson H, Oden A, Karlsson MK, McCloskey E, Kanis JA, Ohlsson C, Mellstrom D (2014) Waning predictive value of serum adiponectin for fracture risk in elderly men: MrOS Sweden. Osteoporos Int 25:1831–1836

    Article  CAS  PubMed  Google Scholar 

  143. Thommesen L, Stunes AK, Monjo M, Grosvik K, Tamburstuen MV, Kjobli E, Lyngstadaas SP, Reseland JE, Syversen U (2006) Expression and regulation of resistin in osteoblasts and osteoclasts indicate a role in bone metabolism. J Cell Biochem 99:824–834

    Article  CAS  PubMed  Google Scholar 

  144. Liu Y, Song CY, Wu SS, Liang QH, Yuan LQ, Liao EY (2013) Novel adipokines and bone metabolism. Int J Endocrinol 2013:895045

    PubMed  PubMed Central  Google Scholar 

  145. Alvarez Bartolome M, Borque M, Martinez-Sarmiento J, Aparicio E, Hernandez C, Cabrerizo L, Fernandez-Represa JA (2002) Peptide YY secretion in morbidly obese patients before and after vertical banded gastroplasty. Obes Surg 12:324–327

    Article  PubMed  Google Scholar 

  146. Mittelman SD, Klier K, Braun S, Azen C, Geffner ME, Buchanan TA (2010) Obese adolescents show impaired meal responses of the appetite-regulating hormones ghrelin and PYY. Obesity (Silver Spring) 18:918–925

    Article  CAS  PubMed Central  Google Scholar 

  147. Utz AL, Lawson EA, Misra M, Mickley D, Gleysteen S, Herzog DB, Klibanski A, Miller KK (2008) Peptide YY (PYY) levels and bone mineral density (BMD) in women with anorexia nervosa. Bone 43:135–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Misra M, Miller KK, Stewart V, Hunter E, Kuo K, Herzog DB, Klibanski A (2005) Ghrelin and bone metabolism in adolescent girls with anorexia nervosa and healthy adolescents. J Clin Endocrinol Metab 90:5082–5087

    Article  CAS  PubMed  Google Scholar 

  149. Campos RM, de Mello MT, Tock L, da Silva PL, Corgosinho FC, Carnier J, de Piano A, Sanches PL, Masquio DC, Tufik S, Damaso AR (2013) Interaction of bone mineral density, adipokines and hormones in obese adolescents girls submitted in an interdisciplinary therapy. J Pediatr Endocrinol Metab 26:663–668

    Article  CAS  PubMed  Google Scholar 

  150. Pacifico L, Anania C, Poggiogalle E, Osborn JF, Prossomariti G, Martino F, Chiesa C (2009) Relationships of acylated and des-acyl ghrelin levels to bone mineralization in obese children and adolescents. Bone 45:274–279

    Article  CAS  PubMed  Google Scholar 

  151. Robson MD, Gatehouse PD, Bydder M, Bydder GM (2003) Magnetic resonance: an introduction to ultrashort TE (UTE) imaging. J Comput Assist Tomogr 27:825–846

    Article  PubMed  Google Scholar 

  152. Bae WC, Chen PC, Chung CB, Masuda K, D’Lima D, Du J (2012) Quantitative ultrashort echo time (UTE) MRI of human cortical bone: correlation with porosity and biomechanical properties. J Bone Miner Res 27:848–857

    Article  PubMed  PubMed Central  Google Scholar 

  153. Li C, Seifert AC, Rad HS, Bhagat YA, Rajapakse CS, Sun W, Lam SC, Wehrli FW (2014) Cortical bone water concentration: dependence of MR imaging measures on age and pore volume fraction. Radiology 272:796–806

    Article  PubMed  PubMed Central  Google Scholar 

  154. Rajapakse CS, Bashoor-Zadeh M, Li C, Sun W, Wright AC, Wehrli FW (2015) Volumetric cortical bone porosity assessment with MR imaging: validation and clinical feasibility. Radiology 276:526–535

    Article  PubMed  PubMed Central  Google Scholar 

  155. Lekadir K, Hoogendoorn C, Armitage P, Whitby E, King D, Dimitri P, Frangi AF (2016) Estimation of trabecular bone parameters in children from multisequence MRI using texture-based regression. Med Phys 43:3071

    Article  PubMed  Google Scholar 

  156. Cianferotti L, Brandi ML (2014) Muscle-bone interactions: basic and clinical aspects. Endocrine 45:165–177

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joshua N. Farr or Paul Dimitri.

Ethics declarations

Conflict of interest

Joshua N. Farr and Paul Dimitri have no conflict of interest.

Human and Animal Rights and Informed Consent

The research described was conducted in accordance with Human and Animal Rights and informed written consent was obtained from human participants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farr, J.N., Dimitri, P. The Impact of Fat and Obesity on Bone Microarchitecture and Strength in Children. Calcif Tissue Int 100, 500–513 (2017). https://doi.org/10.1007/s00223-016-0218-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-016-0218-3

Keywords

Navigation