Skip to main content

Advertisement

Log in

Bone Structural Changes and Estimated Strength After Gastric Bypass Surgery Evaluated by HR-pQCT

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Roux-en-Y gastric bypass surgery (RYGB) is an effective treatment of morbid obesity, with positive effects on obesity-related complications. The treatment is associated with bone loss, which in turn might increase fracture risk. The aim of this study was to evaluate changes in bone mineral density (BMD) and bone architecture assessed using dual-energy X-ray absorptiometry (DXA) and high-resolution peripheral quantitative computed tomography (HR-pQCT), 6 and 12 months after RYGB, and correlate them to changes in selected biochemical markers. A prospective cohort study included 25 morbidly obese patients (10 males, 15 females). Patients were examined with DXA of the hip and spine, HR-pQCT of radius and tibia, and blood sampling before and 6 and 12 months after RYGB. Patients lost in average 33.5 ± 12.1 kg (25.8 ± 8.5 %) in 12 months. In tibia, we found significant loss of total, cortical and trabecular volumetric BMD after 12 months (all p < 0.001). Microarchitectural changes involved lower trabecular number, increased trabecular separation, and network inhomogeneity along with thinning of the cortex. Estimated bone failure load was decreased after 12 months (p = 0.005). We found only minor changes in radius. Results demonstrate significant alterations of bone microarchitecture suggesting an accelerated endosteal resorption along with disintegration of the trabecular structure which resulted in a loss of estimated bone strength in tibia. Such changes may underlie the recently reported increased risk of fracture in bariatric patients after surgery. We only observed bone structural changes in the weight-bearing bone, which indicates that mechanical un-loading is the primary mediator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sjöström L, Lindroos A, Peltonen M, Torgerson J, Bouchard C, Carlsson B et al (2004) Lifestyle, diabetes and cardiovascular Risk Factors 10 years after bariatric surgery. N Engl J Med 351(26):2683–2693

    Article  PubMed  Google Scholar 

  2. Davies SW, Efird JT, Guidry CA, Penn RI, Sawyer RG, Schirmer BD et al (2015) Twenty-first century weight loss: banding versus bypass. Surg Endosc 29(4):947–954

    Article  PubMed  Google Scholar 

  3. Hewitt S, Søvik TT, Aasheim ET, Kristinsson J, Jahnsen J, Birketvedt GS et al (2013) Secondary hyperparathyroidism, vitamin D sufficiency, and serum calcium 5 years after gastric bypass and duodenal switch. Obes Surg 23(3):384–390

    Article  PubMed  Google Scholar 

  4. Reid IR (2010) Fat and bone. Arch Biochem Biophys 503(1):20–27

    Article  CAS  PubMed  Google Scholar 

  5. Frederich RC, Hamann A, Anderson S, Löllmann B, Lowell BB, Flier JS (1995) Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat Med 1(12):1311–1314

    Article  CAS  PubMed  Google Scholar 

  6. Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y et al (1995) Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1(11):1155–1161

    Article  CAS  PubMed  Google Scholar 

  7. Chen XX, Yang T (2015) Roles of leptin in bone metabolism and bone diseases. J Bone Miner Metab 33(5):474–485

  8. Lenchik L, Register TC, Hsu FC, Lohman K, Nicklas BJ, Freedman BI et al (2003) Adiponectin as a novel determinant of bone mineral density and visceral fat. Bone 33(4):646–651

    Article  CAS  PubMed  Google Scholar 

  9. Carrasco F, Ruz M, Rojas P, Csendes A, Rebolledo A, Codoceo J et al (2009) Changes in bone mineral density, body composition and adiponectin levels in morbidly obese patients after bariatric surgery. Obes Surg 19(1):41–46

    Article  PubMed  Google Scholar 

  10. Reid IR (2008) Relationships between fat and bone. Osteoporos Int 19(5):595–606

    Article  CAS  PubMed  Google Scholar 

  11. Spector ER, Smith SM, Sibonga JD (2009) Skeletal effects of long-duration head-down bed rest. Aviat Space Environ Med 80(5):23–28

    Article  Google Scholar 

  12. LeBlanc AD, Spector ER, Evans HJ, Sibonga JD (2007) Skeletal responses to space flight and the bed rest analog: a review. J Musculoskelet Neuronal Interact 7(1):33–47

    CAS  PubMed  Google Scholar 

  13. Beck TJ, Petit MA, Wu G, LeBoff MS, Cauley JA, Chen Z (2009) Does obesity really make the femur stronger? BMD, geometry, and fracture incidence in the women’s health initiative-observational study. J Bone Miner Res 24(8):1369–1379

    Article  PubMed Central  PubMed  Google Scholar 

  14. Prieto-Alhambra D, Premaor MO, Fina Avilés F, Hermosilla E, Martinez-Laguna D, Carbonell-Abella C et al (2012) The association between fracture and obesity is site-dependent: a population-based study in postmenopausal women. J Bone Miner Res 27(2):294–300

    Article  PubMed  Google Scholar 

  15. Gnudi S, Sitta E, Lisi L (2009) Relationship of body mass index with main limb fragility fractures in postmenopausal women. J Bone Miner Metab 27(4):479–484

    Article  PubMed  Google Scholar 

  16. Nielson CM, Marshall LM, Adams AL, LeBlanc ES, Cawthon PM, Ensrud K et al (2011) BMI and fracture risk in older men: the osteoporotic fractures in men study (MrOS). J Bone Miner Res 26(3):496–502

    Article  PubMed Central  PubMed  Google Scholar 

  17. Lalmohamed A, de Vries F, Bazelier MT, Cooper A, van Staa T-P, Cooper C et al (2012) Risk of fracture after bariatric surgery in the United Kingdom: population based, retrospective cohort study. BMJ 345:e5085

    Article  PubMed Central  PubMed  Google Scholar 

  18. Nakamura KM, Haglind EGC, Clowes JA, Achenbach SJ, Atkinson EJ, Melton LJ et al (2014) Fracture risk following bariatric surgery: a population-based study. Osteoporos Int 25(1):151–158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Mahdy T, Atia S, Farid M, Adulatif A (2008) Effect of Roux-en Y gastric bypass on bone metabolism in patients with morbid obesity: mansoura experiences. Obes Surg 18(12):1526–1531

    Article  PubMed  Google Scholar 

  20. Vilarrasa N, Gómez JM, Elio I, Gómez-Vaquero C, Masdevall C, Pujol J et al (2009) Evaluation of bone disease in morbidly obese women after gastric bypass and risk factors implicated in bone loss. Obes Surg 19(7):860–866

    Article  PubMed  Google Scholar 

  21. Nelson L, Gulenchyn KY, Atthey M, Webber CE (2010) Is a fixed value for the least significant change appropriate? J Clin Densitom 13(1):18–23

    Article  PubMed  Google Scholar 

  22. Bolotin HH (2007) DXA in vivo BMD methodology: an erroneous and misleading research and clinical gauge of bone mineral status, bone fragility, and bone remodelling. Bone 41(1):138–154

    Article  CAS  PubMed  Google Scholar 

  23. Yu EW, Thomas BJ, Brown JK, Finkelstein JS (2012) Simulated increases in body fat and errors in bone mineral density measurements by DXA and QCT. J Bone Miner Res 27(1):119–124

    Article  PubMed  Google Scholar 

  24. Yu EW, Bouxsein ML, Roy AE, Baldwin C, Cange A, Neer RM et al (2014) Bone loss after bariatric surgery: discordant results between DXA and QCT bone density. J Bone Miner Res 29(3):542–550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Evans EM, Mojtahedi MC, Kessinger RB, Misic MM (2006) Simulated change in body fatness affects Hologic QDR 4500A whole body and central DXA bone measures. J Clin Densitom. 9(3):315–322

    Article  PubMed  Google Scholar 

  26. Stein EM, Carrelli A, Young P, Bucozsky M, Zhang C, Schrope B et al (2013) Bariatric Surgery Results in Cortical Bone Loss. J Clin Endocrinol Metab 98(2):541–549

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Yu EW, Bouxsein ML, Putman MS, Monis EL, Roy AE, Pratt JS a., et al. (2015) Two-year changes in bone density after Roux-en-Y gastric bypass surgery. J Clin Endocrinol Metab 100(4):1452–1459

  28. Laib A, Rüegsegger P (1999) Calibration of trabecular bone structure measurements of in vivo three-dimensional peripheral quantitative computed tomography with 28-microm-resolution microcomputed tomography. Bone 24(1):35–39

    Article  CAS  PubMed  Google Scholar 

  29. Laib A, Hildebrand T, Häuselmann HJ, Rüegsegger P (1997) Ridge number density: a new parameter for in vivo bone structure analysis. Bone 21(6):541–546

    Article  CAS  PubMed  Google Scholar 

  30. Müller R, Hildebrand T, Häuselmann HJ, Rüegsegger P (1996) In vivo reproducibility of three-dimensional structural properties of noninvasive bone biopsies using 3D-pQCT. J Bone Miner Res 11(11):1745–1750

    Article  PubMed  Google Scholar 

  31. Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90(12):6508–6515

    Article  CAS  PubMed  Google Scholar 

  32. Pauchard Y, Liphardt A-M, Macdonald HM, Hanley DA, Boyd SK (2012) Quality control for bone quality parameters affected by subject motion in high-resolution peripheral quantitative computed tomography. Bone 50(6):1304–1310

    Article  PubMed  Google Scholar 

  33. Laib A, Häuselmann HJ, Rüegsegger P (1998) In vivo high resolution 3D-QCT of the human forearm. Technol Heal care 6(5–6):329–337

    CAS  Google Scholar 

  34. Burghardt AJ, Buie HR, Laib A, Majumdar S, Boyd SK (2010) Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT. Bone 47(3):519–528

    Article  PubMed Central  PubMed  Google Scholar 

  35. Nishiyama KK, Macdonald HM, Buie HR, Hanley DA, Boyd SK (2010) Postmenopausal women with osteopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal aBMD: an in vivo HR-pQCT study. J Bone Miner Res. 25(4):882–890

    PubMed  Google Scholar 

  36. Pistoia W, van Rietbergen B, Lochmüller E-M, Lill CA, Eckstein F, Rüegsegger P (2002) Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone. 30(6):842–848

    Article  CAS  PubMed  Google Scholar 

  37. Hansen S, Hauge EM (2013) Beck Jensen JE, Brixen K. Differing effects of PTH 1-34, PTH 1-84, and zoledronic acid on bone microarchitecture and estimated strength in postmenopausal women with osteoporosis: an 18-month open-labeled observational study using HR-pQCT. J Bone Miner Res 28(4):736–745

    Article  CAS  PubMed  Google Scholar 

  38. Fleischer J, Stein EM, Bessler M, Della Badia M, Restuccia N, Olivero-Rivera L et al (2008) The decline in hip bone density after gastric bypass surgery is associated with extent of weight loss. J Clin Endocrinol Metab 93(10):3735–3740

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Pereira FA, Foss MC (2007) Impact of marked weight loss induced by bariatric surgery on bone mineral density and remodeling. Braz J Med Biol Res 40:509–517

    Article  CAS  PubMed  Google Scholar 

  40. Vilarrasa N, San José P, García I, Gómez-Vaquero C, Miras PM, de Gordejuela AGR et al (2011) Evaluation of bone mineral density loss in morbidly obese women after gastric bypass: 3-year follow-up. Obes Surg 21(4):465–472

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to Steffanie Anthony Christensen and the rest of the staff at the Osteoporosis clinic, Odense University Hospital, for patient management.

Funding

The study was supported by grants from the region of Southern Denmark.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrine Diemer Frederiksen.

Ethics declarations

Conflict of interest

KD. Frederiksen, S. Hanson S. Hansen, J. Gram and N.R. Jørgensen had no conflicts of interest related to the current study. K. Brixen has received consultant fees and grants from MSD, are investigator for MSD, Amgen, Novartis and NPS and part in speakers bureau for Amgen and GlaxoSmithKline. R.K. Stoving has received consultant and lecture fees from Novo Nordisk.

Human and Animal Rights and Informed Consent

All participants provided written informed consent before inclusion, and the study was approved by The Regional Scientific Ethical Committee for Southern Denmark (File No. 2011-0050).

Additional information

Katrine Diemer Frederiksen and Stine Hanson have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frederiksen, K.D., Hanson, S., Hansen, S. et al. Bone Structural Changes and Estimated Strength After Gastric Bypass Surgery Evaluated by HR-pQCT. Calcif Tissue Int 98, 253–262 (2016). https://doi.org/10.1007/s00223-015-0091-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-015-0091-5

Keywords

Navigation