Skip to main content
Log in

Effect of the Proportion of Organic Material in Bone on Thermal Decomposition of Bone Mineral: An Investigation of a Variety of Bones from Different Species Using Thermogravimetric Analysis coupled to Mass Spectrometry, High-Temperature X-ray Diffraction, and Fourier Transform Infrared Spectroscopy

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Thermogravimetric analysis linked to mass spectrometry (TGA-MS) shows changes in mass and identifies gases evolved when a material is heated. Heating to 600°C enabled samples of bone to be classified as having a high (cod clythrum, deer antler, and whale periotic fin bone) or a low (porpoise ear bone, whale tympanic bulla, and whale ear bone) proportion of organic material. At higher temperatures, the mineral phase of the bone decomposed. High temperature X-ray diffraction (HTXRD) showed that the main solids produced by decomposition of mineral (in air or argon at 800°C to 1000°C) were β-tricalcium phosphate (TCP) and hydroxyapatite (HAP), in deer antler, and CaO and HAP, in whale tympanic bulla. In carbon dioxide, the decomposition was retarded, indicating that the changes observed in air and argon were a result of the loss of carbonate ions from the mineral. Fourier transform infrared (FTIR) spectroscopy of bones heated to different temperatures, showed that loss of carbon dioxide (as a result of decomposition of carbonate ions) was accompanied by the appearance of hydroxide ions. These results can be explained if the structure of bone mineral is represented by

$$ {\text{Ca}}_{{\text{10}} - {\text{x}}} {\text{V}}^{{\text{(Ca)}}} _{\text{x}} [({\text{PO}}_{\text{4}} )_{{\text{6}} - {\text{x}} - {\text{y}}} ({\text{HPO}}_{\text{4}} )_{\text{x}} ({\text{CO}}_{\text{3}} )_{\text{y}} ][({\text{OH}})_{{\text{2}} - {\text{x}} - {\text{y}}} ({\text{CO}}_{\text{3}} )_{\text{y}} {\text{V}}^{{\text{(OH)}}} _{\text{x}} ] $$

where V(Ca) and V(OH) correspond to vacancies on the calcium and hydroxide sites, respectively, and 2−x−y = 0.4. This general formula is consistent in describing both mature bone mineral (i.e., whale bone), with a high Ca/P molar ratio, lower HPO 2−4 content, and higher CO 2−3 content, and immature bone mineral (i.e., deer antler), with a low Ca/P ratio, higher HPO 2−4 , and lower CO 2−3 content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. S Lees JM Ahern M Leonard (1983) ArticleTitleParameters influencing the sonic velocity in compact calcified tissues of various species J Acoust Soc Am 74 28–33 Occurrence Handle1:STN:280:BiyB1M7ptlY%3D Occurrence Handle6886195

    CAS  PubMed  Google Scholar 

  2. D Young JL Hopper RJ Macinnis CA Nowson NH Hoang JD Wark (2001) ArticleTitleChanges in body composition as determinants of longitudinal changes in bone mineral measures in 8 to 26-year-old female twins Osteoporos Int 12 506–515 Occurrence Handle10.1007/s001980170097 Occurrence Handle1:STN:280:DC%2BD3Mzpt1emsg%3D%3D Occurrence Handle11446568

    Article  CAS  PubMed  Google Scholar 

  3. B Li RM Aspden (1997) ArticleTitleMaterial properties of bone from the femoral neck and calcar femorale of patients with osteoporosis or osteoarthritis Osteopores Int 7 450–456 Occurrence Handle10.1007/s001980050032 Occurrence Handle1:STN:280:DyaK1c%2Fos1Knsg%3D%3D

    Article  CAS  Google Scholar 

  4. RA Robinson SR Elliot (1957) ArticleTitleThe water content of bone. 1. The mass of water, inorganic crystals and CO2 space components in a unit volume of dog bone J Bone Joint Surg AM 38 167–188

    Google Scholar 

  5. JD Termine (1972) ArticleTitleMineral chemistry and skeletal biology Clin Orthop Rel Res 85 207–241 Occurrence Handle1:STN:280:CS2B3Mvhsl0%3D

    CAS  Google Scholar 

  6. EJ Wheeler D Lewis (1977) ArticleTitleAn X-ray study of the paracrystalline nature of bone apatite Calci Tissue Res 24 243–248 Occurrence Handle1:CAS:528:DyaE1cXnt1aisQ%3D%3D

    CAS  Google Scholar 

  7. JE Harries DWL Hukins SS Hasnain (1988) ArticleTitleCalcium environment in bone mineral determined by EXAFS spectroscopy Calcif Tissue Int 43 250–253 Occurrence Handle1:CAS:528:DyaL1MXitVKkug%3D%3D Occurrence Handle3145131

    CAS  PubMed  Google Scholar 

  8. RM Blitz ED Pellegrino (1971) ArticleTitleThe hydroxyl content of calcified tissue mineral Calcif Tissue Int 36 259–263

    Google Scholar 

  9. C Rey JL Miguel L Facchini AP Legrand MJ Glimcher (1995) ArticleTitleHydroxyl groups in bone mineral Bone 16 583–586 Occurrence Handle10.1016/8756-3282(95)00101-I Occurrence Handle1:CAS:528:DyaK2MXlvFGntrg%3D Occurrence Handle7654473

    Article  CAS  PubMed  Google Scholar 

  10. CK Loong C Rey LT Kuhn C Combes Y Wu SH Chen MJ Glimcher (2000) ArticleTitleEvidence of hydroxyl-ion deficiency in bone apatites: an inelastic neutron-scattering study Bone 26 599–602 Occurrence Handle10.1016/S8756-3282(00)00273-8 Occurrence Handle1:CAS:528:DC%2BD3cXjsVGgs7Y%3D Occurrence Handle10831931

    Article  CAS  PubMed  Google Scholar 

  11. JD Pasteris B Wopenka JJ Freeman K Rogers E Valsami-Jones JAM Houwen Particlevan der MJ Silva (2004) ArticleTitleLack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials Biomaterials 25 229–238 Occurrence Handle10.1016/S0142-9612(03)00487-3 Occurrence Handle1:CAS:528:DC%2BD3sXotlynsL8%3D Occurrence Handle14585710

    Article  CAS  PubMed  Google Scholar 

  12. MG Taylor SF Parker K Simkiss PCH Mitchell (2001) ArticleTitleBone mineral: evidence for hydroxyl groups by inelastic neutron scattering Phys Chem Chem Phys 3 1514–1517 Occurrence Handle10.1039/b005666i Occurrence Handle1:CAS:528:DC%2BD3MXitlKmu7Y%3D

    Article  CAS  Google Scholar 

  13. G Cho Y Wu JL Ackerman (2003) ArticleTitleDetection of hydroxyl ions in bone mineral by solid-state NMR spectroscopy Science 300 1123–1127 Occurrence Handle10.1126/science.1078470 Occurrence Handle1:CAS:528:DC%2BD3sXjslGqsbg%3D Occurrence Handle12750514

    Article  CAS  PubMed  Google Scholar 

  14. FCM Driessens (1980) ArticleTitleProbable phase composition of the mineral in bone Z Naturforsch C 35 357–362 Occurrence Handle1:STN:280:Bi%2BB287kvF0%3D Occurrence Handle6773257

    CAS  PubMed  Google Scholar 

  15. A Bigi G Cojazzi S Panzavolta A Ripamonti N Roveri M Romanello K Norris Suarez L Moro (1997) ArticleTitleChemical and structural characterisation of the mineral phase from cortical and trabecular bone J Inor Biochem 68 45–51 Occurrence Handle10.1016/S0162-0134(97)00007-X Occurrence Handle1:CAS:528:DyaK2sXmt1Wqsrc%3D

    Article  CAS  Google Scholar 

  16. G Bonel (1972) ArticleTitleContribution à l’étude de la carbonation des apatites Ann Chim 14 6588, 127–144

    Google Scholar 

  17. Y Doi T Koda M Adachi N Wakamatsu T Goto H Kamemizu Y Moriwaki Y Suwa (1995) ArticleTitlePyrolysis-gas chromatography of carbonate apatites used for sintering J Biomed Mater Res 29 1451–1457 Occurrence Handle1:CAS:528:DyaK2MXptVCmsLo%3D Occurrence Handle8582914

    CAS  PubMed  Google Scholar 

  18. R LeGeros N Balmain G Bonel (1986) ArticleTitleStructure and composition of the mineral phase of periosteal bone J Chem Phys 1 89

    Google Scholar 

  19. ED Pellegrino RM Biltz (1972) ArticleTitleMineralization in the chick embryo. I. Monohydrogen phosphate and carbonate relationships during maturation of the bone crystal complex Calcif Tissue Int 10 128–135 Occurrence Handle1:CAS:528:DyaE38XlsV2rurc%3D

    CAS  Google Scholar 

  20. ED Pellegrino RM Biltz (1968) ArticleTitleBone carbonate and the Ca to P molar ratio Nature 219 1261–1262 Occurrence Handle1:CAS:528:DyaF1MXpslCh Occurrence Handle4971122

    CAS  PubMed  Google Scholar 

  21. RZ LeGeros N Balmain G Bonel (1987) ArticleTitleAge-related changes in mineral of rat and bovine cortical bone Calcif Tissue Int 41 137–144 Occurrence Handle3117340

    PubMed  Google Scholar 

  22. EG Nordstrom KH Karlsson (1990) ArticleTitleCarbonate-doped apatite J Mate Science Mate Med 1 182–184 Occurrence Handle1:CAS:528:DyaK3MXitFCgt78%3D

    CAS  Google Scholar 

  23. MA Larmas H Hayrynen LHJ Lajunen (1993) ArticleTitleThermogravimetric studies on sound and carious human enamel and dentine as well as hydroxyapatite Scand J Dent Res 101 185–191 Occurrence Handle1:CAS:528:DyaK2cXhslegur4%3D Occurrence Handle8395702

    CAS  PubMed  Google Scholar 

  24. R McPherson N Gane TJ Bastow (1995) ArticleTitleStructural characterization of plasma-sprayed hydroxylapatite coatings J Mater Science Mater Med 6 327–334 Occurrence Handle1:CAS:528:DyaK2MXmslKnsrg%3D

    CAS  Google Scholar 

  25. S Lazic J KatanicPopovic S Zec N Miljevic (1996) ArticleTitleProperties of hydroxyapatite crystallized from high temperature alkaline solutions J Crystal Growth 165 124–128 Occurrence Handle10.1016/0022-0248(96)00165-0 Occurrence Handle1:CAS:528:DyaK28XktFOjt70%3D

    Article  CAS  Google Scholar 

  26. I Mayer H Cohen JC Voegel FJG Cuisinier (1997) ArticleTitleSynthesis, characterization and high temperature analysis of Al-containing hydroxyapatites J Crystal Growth 172 219–225 Occurrence Handle10.1016/S0022-0248(96)00728-2 Occurrence Handle1:CAS:528:DyaK2sXnvVOrsQ%3D%3D

    Article  CAS  Google Scholar 

  27. M Koel M Kudrjasova K Tonsuaadu M Peld M Veiderma (1998) ArticleTitleEvolved gas analysis of apatite materials using thermochromatography Thermochimica Acta 322 25–32 Occurrence Handle10.1016/S0040-6031(98)00478-X Occurrence Handle1:CAS:528:DyaK1cXmslWgtb8%3D

    Article  CAS  Google Scholar 

  28. JD Layani I Mayer FJG Cuisinier (2000) ArticleTitleCarbonated hydroxyapatites precipitated in the presence of Ti J Inorg Biochem 81 57–63 Occurrence Handle10.1016/S0162-0134(00)00115-X Occurrence Handle1:CAS:528:DC%2BD3cXmvFGktLY%3D Occurrence Handle11001432

    Article  CAS  PubMed  Google Scholar 

  29. WI Abdelfattah FA Nour (1993) ArticleTitleThermal-expansion application to assess calcination of bovine hydroxyapatite Thermochimica Acta 218 465–475 Occurrence Handle10.1016/0040-6031(93)80445-G Occurrence Handle1:CAS:528:DyaK3sXlsVCqur0%3D

    Article  CAS  Google Scholar 

  30. Y Okamoto S Hidaka Y Yamada K Ouchi K Miyazaki SY Liu (1998) ArticleTitleThermal analysis of bones from ovarectomized rats J Biomed Mater Res 41 221–226 Occurrence Handle10.1002/(SICI)1097-4636(199808)41:2<221::AID-JBM6>3.0.CO;2-K Occurrence Handle1:CAS:528:DyaK1cXjvFejtL0%3D Occurrence Handle9638526

    Article  CAS  PubMed  Google Scholar 

  31. F Peters K Schwartz M Epple (2000) ArticleTitleThe structure of bone studied with synchrotron X-ray diffraction, X-ray absorption spectroscopy and thermal analysis Thermochimica Acta 361 131–138 Occurrence Handle10.1016/S0040-6031(00)00554-2 Occurrence Handle1:CAS:528:DC%2BD3cXmsl2lt7g%3D

    Article  CAS  Google Scholar 

  32. JC Merry IR Gibson SM Best W Bonfield (1998) ArticleTitleSynthesis and characterisation of carbonate hydroxyapatite J Mater Science Mater Med 9 779–783 Occurrence Handle10.1023/A:1008975507498 Occurrence Handle1:CAS:528:DyaK1MXnsFyktw%3D%3D

    Article  CAS  Google Scholar 

  33. I Abrahams JC Knowles (1994) ArticleTitleEffects of sintering conditions on hydroxyapatite for use in medical applications—a powder diffraction study J Mater Chem 4 185–188 Occurrence Handle10.1039/jm9940400185 Occurrence Handle1:CAS:528:DyaK2cXit1Krurc%3D

    Article  CAS  Google Scholar 

  34. IR Gibson I Rehman SM Best W Bonfield (2000) ArticleTitleCharacterisation of the transformation from calcium-deficient apatite to β-tricalcium phosphate J Mater Science Mater Med 11 533–539 Occurrence Handle10.1023/A:1008961816208 Occurrence Handle1:CAS:528:DC%2BD3cXnsFyjtrY%3D

    Article  CAS  Google Scholar 

  35. LM Miller V Vairavamurthy MR Chance R Mendelsohn EP Paschalis F Betts AL Boskey (2001) ArticleTitleIn situ analysis of mineral content and crystallinity in bone using infrared micro-spectroscopy of the v4 PO 3−4 vibration Biochim Biophys Acta 1527 11–19 Occurrence Handle10.1016/S0304-4165(01)00093-9 Occurrence Handle1:CAS:528:DC%2BD3MXksVGlsbw%3D Occurrence Handle11420138

    Article  CAS  PubMed  Google Scholar 

  36. C Rey M Shimizu B Collins MJ Glimcher (1991) ArticleTitleResolution enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: Investigations in the v4 PO4 domain Calcif Tissue Int 46 384–394

    Google Scholar 

  37. C Rey V Renugopalakrishnan B Collins MJ Glimcher (1991) ArticleTitleFourier transform infrared spectroscopic study of the carbonate ions in bone mineral during aging Calcif Tissue Int 49 251–258 Occurrence Handle1:CAS:528:DyaK38XhvVKnuw%3D%3D Occurrence Handle1760769

    CAS  PubMed  Google Scholar 

  38. Y Wu MJ Glimcher C Rey JL Ackerman (1994) ArticleTitleA unique protonated phosphate group in bone mineral not present in synthetic calcium phosphates. Identification by phosphorus-31 solid state NMR spectroscopy J Mol Biol 244 423–425 Occurrence Handle10.1006/jmbi.1994.1740 Occurrence Handle1:CAS:528:DyaK2MXislemsr4%3D Occurrence Handle7990131

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. S. Lees and Dr. S. D. Mehta for the gift of the bones used in this study. Financial support was provided by the Engineering and Physical Sciences Research Council (UK). R.M.A. was supported by a Medical Research Council Senior Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. W. L. Hukins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mkukuma, L.D., Skakle, J.M.S., Gibson, I.R. et al. Effect of the Proportion of Organic Material in Bone on Thermal Decomposition of Bone Mineral: An Investigation of a Variety of Bones from Different Species Using Thermogravimetric Analysis coupled to Mass Spectrometry, High-Temperature X-ray Diffraction, and Fourier Transform Infrared Spectroscopy. Calcif Tissue Int 75, 321–328 (2004). https://doi.org/10.1007/s00223-004-0199-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-004-0199-5

Keywords

Navigation