Skip to main content
Log in

The Brownian motion as the limit of a deterministic system of hard-spheres

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We provide a rigorous derivation of the Brownian motion as the limit of a deterministic system of hard-spheres as the number of particles \(N\) goes to infinity and their diameter \(\varepsilon \) simultaneously goes to \(0\), in the fast relaxation limit \(\alpha = N\varepsilon ^{d-1}\rightarrow \infty \) (with a suitable diffusive scaling of the observation time). As suggested by Hilbert in his sixth problem, we rely on a kinetic formulation as an intermediate level of description between the microscopic and the fluid descriptions: we use indeed the linear Boltzmann equation to describe one tagged particle in a gas close to global equilibrium. Our proof is based on the fundamental ideas of Lanford. The main novelty here is the detailed study of the branching process, leading to explicit estimates on pathological collision trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alexander, R.: The infinite hard sphere system, Ph.D. dissertation, Department of Mathematics, University of California, Berkeley (1975)

  2. Alexander, R.: Time evolution for infinitely many hard spheres. Comm. Math. Phys. 49(3), 217–232 (1976)

    Article  MathSciNet  Google Scholar 

  3. Bardos, C.: Problèmes aux limites pour les quations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d’approximation; application à l’équation de transport. Ann. Sci. École Norm. Sup. 4(3), 185–233 (1970)

    MathSciNet  MATH  Google Scholar 

  4. Bardos, C., Golse, F., Levermore, C.D.: Fluid dynamic limits of the Boltzmann equation I. J. Stat. Phys. 63, 323–344 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bardos, C., Golse, F., Levermore, C.D.: Fluid dynamic limits of kinetic equations II: convergence proofs for the Boltzmann equation. Comm. Pure Appl. Math. 46, 667–753 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bardos, C., Santos, R., Sentis, R.: Diffusion approximation and computation of the critical size. Trans. Am. Math. Soc 284(2), 617–649 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  7. van Beijeren, H., Lanford III, O.E., Lebowitz, J.L., Spohn, H.: Equilibrium time correlation functions in the low density limit. J. Stat. Phys. 22, 237–257 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  8. Billingsley, P.: Probability and measure. Wiley series in probability and mathematical statistics. Wiley (1995)

  9. Boldrighini, C., Bunimovich, L.A., Sinai, Y.: On the Boltzmann equation for the Lorentz gas. J. Stat. Phys. 32(3), 477–501 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bunimovich, L.A., Sinai, Y.G.: Statistical properties of Lorentz gas with periodic configuration of scatterers. Comm. Math. Phys. 78, 479–497 (1980/81)

  11. Caglioti, E., Golse, F.: On the distribution of free path lengths for the periodic Lorentz gas III. Commun. Math. Phys. 236, 199–221 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Caglioti, E., Golse, F.: On the Boltzmann-Grad limit for the two dimensional periodic Lorentz gas. J. Stat. Phys. 141, 264–317 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cercignani, C., Illner, R., Pulvirenti, M.: The mathematical theory of dilute gases. Springer, New York (1994)

    Book  MATH  Google Scholar 

  14. De Roeck, W., Fröhlich, J.: Diffusion of a massive quantum particle coupled to a quasi-free thermal medium. Comm. Math. Phys. 303(3), 613–707 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Desvillettes, L., Golse, F.: A remark concerning the Chapman-Enskog asymptotics. In: Perthame, B. (ed.) Advances in kinetic theory and computing. Ser. Adv. Math. Appl. Sci., vol. 22, pp. 191–203. World Science Publishing, River Edge (1994)

    Google Scholar 

  16. Desvillettes, L., Pulvirenti, M.: The linear Boltzmann equation for long-range forces: a derivation from particles. Math. Meth. Mod. Appl. Sci. 9(8), 11231145 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Desvillettes, L., Ricci, V.: A rigorous derivation of a linear kinetic equation of Fokker–Planck type in the limit of grazing collisions. J. Stat. Phys. 104(5–6), 1173–1189 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Erdős, L.: Lecture notes on quantum Brownian motion, quantum theory from small to large scales: lecture notes of the Les Houches summer school, 95, Oxford University Press (2010)

  19. Erdős, L., Salmhofer, M., Yau, H.T.: Quantum diffusion of the random Schrodinger evolution in the scaling limit. Acta Math. 200(2), 211–278 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Esposito, R., Marra, R., Yau, H.T.: Navier–Stokes equations for stochastic particle systems on the lattice. Comm. Math. Phys. 182, 395–456 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gallagher, I., Saint-Raymond, L., Texier, B.: From Newton to Boltzmann: the case of hard-spheres and short-range potentials, Zürich lectures in advanced mathematics 18. Erratum to Chapter 5 (2014)

  22. Gallavotti, G.: Statistical mechanics. A short treatise. Texts and monographs in physics. Springer, Berlin (1999)

    MATH  Google Scholar 

  23. Golse, F.: On the periodic Lorentz gas and the Lorentz kinetic equation. Ann. Fac. Sci. Toulouse Math. 17, 735–749 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hilbert, D.: Begründung der kinetischen Gastheorie. (German). Math. Ann. 72(4), 562–577 (1912)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kac, M.: Probability and related topics in physical sciences, Am. Math. Soc., p. 1 (1959)

  26. King, F.: BBGKY hierarchy for positive potentials, Ph.D. dissertation, Dept. Mathematics, Univ. California, Berkeley (1975)

  27. Komorowski, T., Landim, C., Olla, S.: Fluctuations in Markov processes. Time symmetry and martingale approximation. Grundlehren der Mathematischen Wissenschaften, vol. 345. Springer, Heidelberg (2012)

    Book  MATH  Google Scholar 

  28. Lanford, O.E.: Time evolution of large classical systems. In: Moser, J. (ed.) Lecture notes in physics, vol. 38, pp. 1–111, Springer (1975)

  29. Lebowitz, J., Spohn, H.: Microscopic basis for Fick’s law for self-diffusion. J. Stat. Phys. 28, 539–556 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lebowitz, J., Spohn, H.: Steady state self-diffusion at low density. J. Stat. Phys. 29, 39–55 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lorentz, H.: Le mouvement des électrons dans les métaux. Arch. Neerl. 10, 336–371 (1905)

    MATH  Google Scholar 

  32. Marklof, J.: Kinetic transport in crystals. In: Proceedings of the XVI International Congress on Mathematical Physics, Prague 2009, World Scientific, pp. 162–179 (2010)

  33. Marklof, J., Strömbergsson, A.: The Boltzmann–Grad limit of the periodic Lorentz gas. Ann. Math. 174, 225–298 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Marklof, J., Toth, B.: Superdiffusion in the periodic Lorentz gas, arXiv:1403.6024, preprint (2014)

  35. Pettersson, R.: On weak and strong convergence to equilibrium for solutions to the linear Boltzmann equation. J. Stat. Phys. 72, 355–380 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  36. Olla, S., Varadhan, S., Yau, H.-T.: Hydrodynamical limit for a Hamiltonian system with weak noise. Commun. Math. Phys. 155, 523–560 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pulvirenti, M., Saffirio, C., Simonella, S.: On the validity of the Boltzmann equation for short range potentials. Rev. Math. Phys. 26(2), 1450001 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Quastel, J., Yau, H.-T.: Lattice gases, large deviations, and the incompressible Navier–Stokes equations. Ann. Math. 148, 51–108 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. Saint-Raymond, L.: Hydrodynamic limits of the Boltzmann equation. Lecture notes in mathematics, vol. 1971, Springer (2009)

  40. Simonella, S.: Evolution of correlation functions in the hard sphere dynamics. J. Stat. Phys. 155(6), 1191–1221 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Spohn, H.: The Lorentz process converges to a random flight process. Commun. Math. Phys. 60, 277–290 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  42. Spohn, H.: Large scale dynamics of interacting particles, vol. 174, Springer (1991)

  43. Szasz, D., Toth, B.: Towards a unified dynamical theory of the Brownian particle in an ideal gas. Comm. Math. Phys. 111, 41–62 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  44. Uchiyama, K.: Derivation of the Boltzmann equation from particle dynamics. Hiroshima Math. J. 18(2), 245–297 (1988)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Laurent Desvillettes, François Golse, Herbert Spohn and Balint Toth for fruitful discussions and for suggesting interesting bibliographical references. Finally we extend our thanks to the anonymous referees for suggesting many improvements in the manuscript. The work of I. Gallagher has been supported by the grant ANR-12-BS01-0013-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laure Saint-Raymond.

Appendices

Appendix A: Asymptotic control of the exclusion

For the sake of completeness, we recall here the proof of Proposition 3.2. We omit all subscripts \(\beta \) to simplify the presentation.

  • First step: asymptotic behaviour of the partition function.

We first prove that in the scaling \(N {\varepsilon }^{d-1}\ \equiv \alpha \), with \(\alpha \ll 1/\varepsilon \),

$$\begin{aligned} 1 \le {\mathcal {Z}}_N^{-1} {\mathcal {Z}}_{N-s} \le \big ( 1 - {\varepsilon }\alpha {\kappa }_d \big )^{-s}, \end{aligned}$$
(7.1)

where \({\kappa }_d\) denotes the volume of the unit ball in \({\mathbf {R}}^d\). The first inequality is due to the immediate upper bound

$$\begin{aligned} {\mathcal {Z}}_N \le {\mathcal {Z}}_{N-s}. \end{aligned}$$

Let us prove the second inequality. We have by definition

$$\begin{aligned} {\mathcal {Z}}_{s+1} = \int _{ {\mathbf {T}}^{d(s+1)} } \left( \prod _{1 \le i \ne j \le s+1} \mathbf{1}_{|x_i-x_{j} |>{\varepsilon }}\right) \, dX_{s+1}. \end{aligned}$$

By Fubini’s equality, we deduce

$$\begin{aligned} {\mathcal {Z}}_{s+1} \!=\! \int _{ {\mathbf {T}}^{ds} } \!\left( \int _{ {\mathbf {T}}^{d} } \left( \prod _{1 \le i \le s} \mathbf{1}_{|x_i-x_{s+1} |>{\varepsilon }}\right) \, dx_{s+1}\right) \left( \prod _{1 \le i\ne j \le s} \mathbf{1}_{|x_i-x_{j} |>{\varepsilon }}\right) \, dX_{s}. \end{aligned}$$

Since

$$\begin{aligned} \int _{ {\mathbf {T}}^{d} } \left( \prod _{1 \le i \le s} \mathbf{1}_{|x_i-x_{s+1} |>{\varepsilon }}\right) \, dx_{s+1}\ge 1- {\kappa }_d s {\varepsilon }^d , \end{aligned}$$

we deduce the lower bound

$$\begin{aligned} {\mathcal {Z}}_{s+1} \ge {\mathcal {Z}}_{s} ( 1- {\kappa }_d s {\varepsilon }^d ) \ge {\mathcal {Z}}_{s} (1-{\kappa }_d {\varepsilon }\alpha ), \end{aligned}$$

where we used \(s \le N\) and the scaling \(N {\varepsilon }^{d-1} \equiv \alpha \). This implies by induction

$$\begin{aligned} {\mathcal {Z}}_N \ge {\mathcal {Z}}_{N-s} \big ( 1 - {\varepsilon }\alpha {\kappa }_d \big )^s. \end{aligned}$$

That proves (7.1).

  • Second step: convergence of the marginals.

Let us introduce the short-hand notation

$$\begin{aligned} dZ_{(s+1,N)} :=dz_{s+1} \dots dz_N. \end{aligned}$$

We compute for \(s \le N\)

$$\begin{aligned}&M_N^{(s)} (Z_s)\\&\quad = {\mathcal {Z}}_N^{-1} \mathbf{1}_{Z_s \in {\mathcal {D}}_{\varepsilon }^s}\left( \frac{\beta }{2\pi }\right) ^{ \frac{sd}{2}}\exp \left( -\frac{\beta }{2} |V_s|^2\right) \\&\qquad \times \int _{ {\mathbf {R}}^{d(N-s)}} \left( \frac{\beta }{2\pi }\right) ^{ \frac{(N-s)d}{2}} \exp \left( -\frac{\beta }{2} \sum _{i=s+1}^N|v_i|^2\right) \, dV_{(s+1,N)}\\&\qquad \times \int _{ {\mathbf {T}}^{d(N-s)} } \left( \prod _{s+1 \le i \ne j \le N} \mathbf{1}_{|x_i - x_j| > {\varepsilon }} \right) \left( \prod _{i '\le s < j'} \mathbf{1}_{|x_{i'} - x_{j'}| > {\varepsilon }} \right) \times dX_{(s+1,N)}. \end{aligned}$$

We deduce, by symmetry,

$$\begin{aligned} M_N^{(s)} = {\mathcal {Z}}_N^{-1} \mathbf{1}_{Z_s \in {\mathcal {D}}_{\varepsilon }^s}M^{\otimes s} \Big ( {\mathcal {Z}}_{N-s} - {\mathcal {Z}}^\flat _{(s+1,N)} \Big ) \end{aligned}$$
(7.2)

with the notation

$$\begin{aligned} {\mathcal {Z}}^\flat _{(s+1,N)} := \int _{{\mathbf {T}}^{d(N-s) } } \left( 1 - \prod _{i \le s < j}\mathbf{1}_{|x_i - x_j| > {\varepsilon }}\right) \prod _{s+1 \le k \ne \ell \le N} \mathbf{1}_{|x_k- x_\ell | > {\varepsilon }}\, dX_{(s+1,N)}. \end{aligned}$$

From there, the difference \( \mathbf{1}_{Z_s \in {\mathcal {D}}_{\varepsilon }^s}M^{\otimes s} - M_{N}^{(s)}\) decomposes as a sum

$$\begin{aligned} \mathbf{1}_{Z_s \in {\mathcal {D}}_{\varepsilon }^s}M^{\otimes s} - M_{N}^{(s)}= & {} \left( 1 - {\mathcal {Z}}_{N}^{-1} {\mathcal {Z}}_{N-s}\right) \mathbf{1}_{Z_s \in {\mathcal {D}}_{\varepsilon }^s}M^{\otimes s} \nonumber \\&+{\mathcal {Z}}_N^{-1} {\mathcal {Z}}^\flat _{(s+1,N)} \mathbf{1}_{Z_s \in {\mathcal {D}}_{\varepsilon }^s}M^{\otimes s} . \end{aligned}$$
(7.3)

By (7.1), there holds \(1- {\mathcal {Z}}_{N}^{-1} {\mathcal {Z}}_{N-s} \rightarrow 0\) as \(N \rightarrow \infty \), for fixed \(s\). Since \(M^{\otimes s}\) is uniformly bounded, this implies that the first term in the right-hand side of (7.3) tends to 0 as \(N \) goes to \( \infty \). Besides, by

$$\begin{aligned} 0 \le 1 - \prod _{i \le s < j}\mathbf{1}_{|x_i - x_j| > {\varepsilon }} \le \sum _{i \le s < j} \mathbf{1}_{|x_i-x_j|<{\varepsilon }}, \end{aligned}$$

we bound

$$\begin{aligned}&{\mathcal {Z}}^\flat _{(s+1,N)}\\&\quad \le \sum _{1 \le i \le s}\int _{{\mathbf {T}}^{d(N-s)}} \left( \sum _{s+1 \le j \le N} \mathbf{1}_{|x_i-x_j|<{\varepsilon }}\right) \prod _{s+1 \le k \ne \ell \le N} \mathbf{1}_{|x_k - x_ \ell | > {\varepsilon }} \, dX_{(s+1,N)}. \end{aligned}$$

Given \(1 \le i\le s\), there holds by symmetry and Fubini’s equality,

$$\begin{aligned}&\int _{{\mathbf {T}}^{d(N-s)} }\left( \sum _{s+1 \le j \le N} \mathbf{1}_{|x_i-x_j|<{\varepsilon }}\right) \prod _{s+1 \le k \ne l \le N} \mathbf{1}_{|x_k - x_l| > {\varepsilon }}\ dX_{(s+1,N)}\\&\quad \le (N-s) \int _{{\mathbf {T}}^{d } } \mathbf{1}_{|x_i - x_{s+1}| < {\varepsilon }} \, dx_{s+1} \int _{{\mathbf {T}}^{d(N-s-1)} } \prod _{s+2\le k \ne l \le N} \mathbf{1}_{|x_k - x_l| > {\varepsilon }} \, dX_{(s+2,N)} \\&\quad = (N-s) \int _{{\mathbf {T}}^{d } } \mathbf{1}_{|x_i - x_{s+1}| < {\varepsilon }} \, dx_{s+1} \, \times \, {\mathcal {Z}}_{N-s-1}, \end{aligned}$$

so that

$$\begin{aligned} {\mathcal {Z}}^\flat _{(s+1,N)} \le s (N-s) {\varepsilon }^d {\kappa }_d {\mathcal {Z}}_{N-s-1}. \end{aligned}$$
(7.4)

By (7.1), we obtain

$$\begin{aligned} {\mathcal {Z}}_N^{-1} {\mathcal {Z}}^\flat _{(s+1,N)} \le {\varepsilon }\alpha s {\kappa }_d \big (1 - {\varepsilon }\alpha {\kappa }_d \big )^{-(s+1)}, \end{aligned}$$

and the upper bound tends to 0 as \(N \rightarrow \infty \), for fixed \(s\). This implies convergence to 0 of the second term in the right-hand side of (7.3).

This completes the proof of Proposition 3.2.

Appendix B: Recollisions in the torus

We show here how to adapt the arguments of [21] to prove Lemma 5.2.

  • To build the set of “bad velocities”, we use the correspondence between the torus and the whole space with periodic structure. Asking that there exists \(u \in [0,t]\) such that

    $$\begin{aligned} d\big ((x_1-v_1 u ),( x _2-v_2 u )\big ) \le {\varepsilon }, \end{aligned}$$

    boils down to having

    $$\begin{aligned} (x_1-v_1 u )-( x _2-v_2 u ) \in \bigcup _{k\in {\mathbf {Z}}^d} B_{{\varepsilon }}(k). \end{aligned}$$

Then, by the triangular inequality and provided that \({\varepsilon }<\bar{a}\),

$$\begin{aligned} ( x^0_1-v_1 u )-( x^0_2-v_2 u ) \in \bigcup _{k\in {\mathbf {Z}}^d} B_{3\bar{a}}(k ). \end{aligned}$$

Now, since \(|v_1-v_2|\le 2E\) and \(u \in [0,t]\), this implies that

$$\begin{aligned} s (v_1-v_2) \in \left( \bigcup _{k\in {\mathbf {Z}}^d} B_{3 \bar{a}}( x^0_1- x^0_2 + k)\right) \cap B_{0}(2Et). \end{aligned}$$

In other words, \(v_1-v_2\) has to belong to a finite union of cones of vertex 0

  • At most one of which is of solid angle \( ( \bar{a} /{\varepsilon }_0)^{d-1}\);

  • The other ones (at most \((4E t)^d\)) are of solid angle \( c \, \bar{a}^{d-1}\).

The intersection \(K(\bar{x}_1-\bar{x}_2, {\varepsilon }_0, \bar{a}) \) of these cones and of the sphere of radius \(2E\) is of size

$$\begin{aligned} |K(\bar{x}_1-\bar{x}_2, {\varepsilon }_0, \bar{a}) | \le CE^d \left( \Big ( \frac{\bar{a}}{{\varepsilon }_0}\Big )^{d-1} + (E t )^d {\bar{a}}^{d-1}\right) . \end{aligned}$$
  • In order to prove the second estimate, we need to refine a little bit the previous argument. Asking that there exists \(u \in [\delta ,t]\) such that

    $$\begin{aligned} d((x_1-v_1 u ),( x _2-v_2 u) )\le {\varepsilon }_0, \end{aligned}$$

    boils down to having

    $$\begin{aligned} u (v_1-v_2) \in B_{3{\varepsilon }_0}( x^0_1- x^0_2+ k), \end{aligned}$$
    (8.1)

    for some \(k \in {\mathbf {Z}}^d \cap B_{2Et }( x^0_2 - x^0_1)\).

    • If \(| x^0_1- x^0_2 + k| \ge 1/4\), condition (8.1) implies that \(v_1-v_2\) belongs to the intersection of \(B_{2E}(0)\) and some cone of vertex 0 and solid angle \({\varepsilon }_0^{d-1}\).

    • If \(| x^0_1- x^0_2 + k| \le 1/4\) (which can happen only for one value of \(k\)), denoting by \(n\) any unit vector normal to \(\bar{x}_1-\bar{x}_2 + k\), we deduce from (8.1) that

      $$\begin{aligned} u |(v_1-v_2) \cdot n | \le 3{\varepsilon }_0 \end{aligned}$$

      from which we deduce that \(v_1-v_2\) belongs to the intersection of \(B_{2E}(0)\) and some cylinder of radius \({\varepsilon }_0/\delta \).

    The union \(K_\delta ( x^0_1- x^0_2, {\varepsilon }_0, \bar{a})\) of these “bad” sets is therefore of size

    $$\begin{aligned} |K_\delta ( x^0_1- x^0_2, {\varepsilon }_0, \bar{a}) | \le CE \left( \left( \frac{{\varepsilon }_0}{\delta } \right) ^{d-1} + E^{d-1} \big (E t \big )^d {{\varepsilon }_0}^{d-1}\right) . \end{aligned}$$

The lemma is proved. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodineau, T., Gallagher, I. & Saint-Raymond, L. The Brownian motion as the limit of a deterministic system of hard-spheres. Invent. math. 203, 493–553 (2016). https://doi.org/10.1007/s00222-015-0593-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-015-0593-9

Navigation