Skip to main content

Advertisement

Log in

Determining thresholds using adaptive procedures and psychometric fits: evaluating efficiency using theory, simulations, and human experiments

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

When measuring thresholds, careful selection of stimulus amplitude can increase efficiency by increasing the precision of psychometric fit parameters (e.g., decreasing the fit parameter error bars). To find efficient adaptive algorithms for psychometric threshold (“sigma”) estimation, we combined analytic approaches, Monte Carlo simulations, and human experiments for a one-interval, binary forced-choice, direction-recognition task. To our knowledge, this is the first time analytic results have been combined and compared with either simulation or human results. Human performance was consistent with theory and not significantly different from simulation predictions. Our analytic approach provides a bound on efficiency, which we compared against the efficiency of standard staircase algorithms, a modified staircase algorithm with asymmetric step sizes, and a maximum likelihood estimation (MLE) procedure. Simulation results suggest that optimal efficiency at determining threshold is provided by the MLE procedure targeting a fraction correct level of 0.92, an asymmetric 4-down, 1-up staircase targeting between 0.86 and 0.92 or a standard 6-down, 1-up staircase. Psychometric test efficiency, computed by comparing simulation and analytic results, was between 41 and 58 % for 50 trials for these three algorithms, reaching up to 84 % for 200 trials. These approaches were 13–21 % more efficient than the commonly used 3-down, 1-up symmetric staircase. We also applied recent advances to reduce accuracy errors using a bias-reduced fitting approach. Taken together, the results lend confidence that the assumptions underlying each approach are reasonable and that human threshold forced-choice decision making is modeled well by detection theory models and mimics simulations based on detection theory models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. The Cramér-Rao bound—named for Harold Cramér and C.R. Rao, two of the first to derive it—defines the theoretic lower bound for the variance of estimated parameters. More can be learned at http://en.wikipedia.org/wiki/Cramer-Rao_bound.

  2. Indeed, Wetherill (1963) stated that “ we need the asymptotic properties of various strategies.”

References

  • Agrawal Y, Bremova T, Kremmyda O, Strupp M, MacNeilage PR (2013) Clinical testing of otolith function: perceptual thresholds and myogenic potentials. J Assoc Res Otolaryngol 14:905–915

    Article  PubMed Central  PubMed  Google Scholar 

  • Benson AJ, Spencer MB, Stott JR (1986) Thresholds for the detection of the direction of whole-body, linear movement in the horizontal plane. Aviat Space Environ Med 57:1088–1096

    CAS  PubMed  Google Scholar 

  • Benson AJ, Hutt EC, Brown SF (1989) Thresholds for the perception of whole body angular movement about a vertical axis. Aviat Space Environ Med 60:205–213

    CAS  PubMed  Google Scholar 

  • Butler JS, Smith ST, Campos JL, Bulthoff HH (2010) Bayesian integration of visual and vestibular signals for heading. J Vis 10:23

    Article  PubMed  Google Scholar 

  • Chaudhuri SE, Merfeld DM (2013) Signal detection theory and vestibular perception: III. Estimating unbiased fit parameters for psychometric functions. Exp Brain Res 225:133–146

    Article  PubMed Central  PubMed  Google Scholar 

  • Chaudhuri SE, Karmali F, Merfeld DM (2013) Whole-body motion-detection tasks can yield much lower thresholds than direction-recognition tasks: implications for the role of vibration. J Neurophysiol 110:2764–2772

    Article  PubMed Central  PubMed  Google Scholar 

  • Cornsweet T (1962) The staircrase-method in psychophysics. Am J Psychol 75:485–491

    Article  CAS  PubMed  Google Scholar 

  • Cramér H (1946) Mathematical methods of statistics. Princeton University Press, Princeton

    Google Scholar 

  • Crane BT (2012a) Fore-aft translation aftereffects. Exp Brain Res 219:477–487

    Article  PubMed Central  PubMed  Google Scholar 

  • Crane BT (2012b) Roll aftereffects: influence of tilt and inter-stimulus interval. Exp Brain Res 223:89–98

    Article  PubMed Central  PubMed  Google Scholar 

  • Dixon WJ, Mood AM (1948) A method for obtaining and analyzing sensitivity data. J Am Stat Assoc 43:109–126

    Article  Google Scholar 

  • Efron B, Tibshirani RJ (1994) An introduction to the bootstrap. CRC Press, New York

    Google Scholar 

  • Ernst MO, Banks MS (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415:429–433

    Article  CAS  PubMed  Google Scholar 

  • Firth D (1993) Bias reduction of maximum likelihood estimates. Biometrika 80:27–38

    Article  Google Scholar 

  • Fisher RA (1922) On the mathematical foundations of theoretical statistics. Philos Trans R Soc Lond Ser A 222:309–368

    Article  Google Scholar 

  • Fisher RA (1925) Theory of statistical estimation. Proc Cambridge Philos Soc 22:700–725

    Article  Google Scholar 

  • Fletcher H (1923) Physical measurements of audition and their bearing on the theory of hearing. Bell Syst Tech J 2:145–180

    Article  Google Scholar 

  • Garcia-Perez MA (1998) Forced-choice staircases with fixed step sizes: asymptotic and small-sample properties. Vision Res 38:1861–1881

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Perez MA (2000) Optimal setups for forced-choice staircases with fixed step sizes. Spat Vis 13:431–448

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Perez MA, Alcala-Quintana R (2007) Bayesian adaptive estimation of arbitrary points on a psychometric function. Br J Math Stat Psychol 60:147–174

    Article  PubMed  Google Scholar 

  • Garcia-Perez MA, Alcala-Quintana R (2009) Empirical performance of optimal Bayesian adaptive estimation. Span J Psychol 12:3–11

    Article  PubMed  Google Scholar 

  • Garcia-Perez MA, Alcala-Quintana R (2013) Shifts of the psychometric function: distinguishing bias from perceptual effects. Q J Exp Psychol (Hove) 66:319–337

    Article  Google Scholar 

  • Grabherr L, Nicoucar K, Mast FW, Merfeld DM (2008) Vestibular thresholds for yaw rotation about an earth-vertical axis as a function of frequency. Exp Brain Res 186:677–681

    Article  PubMed  Google Scholar 

  • Green DM (1990) Stimulus selection in adaptive psychophysical procedures. J Acoust Soc Am 87:2662–2674

    Article  CAS  PubMed  Google Scholar 

  • Guedry FE, Collins WE, Sheffey PL (1961) Perceptual and oculomotor reactions to interacting visual and vestibular stimulation. Percept Mot Skills 12:307–324

    Article  Google Scholar 

  • Haburcakova C, Lewis RF, Merfeld DM (2012) Frequency dependence of vestibuloocular reflex thresholds. J Neurophysiol 107:973–983

    Article  PubMed Central  PubMed  Google Scholar 

  • Hall JL (1968) Maximum-likelihood sequential procedure for estimation. J Acoust Soc Am 44:370

    Article  Google Scholar 

  • Hall JL (1981) Hybrid adaptive procedure for estimation of psychometric functions. J Acoust Soc Am 69:1763–1769

    Article  CAS  PubMed  Google Scholar 

  • Hartmann M, Haller K, Moser I, Hossner EJ, Mast FW (2014) Direction detection thresholds of passive self-motion in artistic gymnasts. Exp Brain Res 232:1249–1258

    Article  PubMed  Google Scholar 

  • Harvey LO (1986) Efficient estimation of sensory thresholds. Behav Res Methods InstrumComput 18:623–632

    Article  Google Scholar 

  • Kaernbach C (1991) Simple adaptive testing with the weighted up-down method. Percept Psychophys 49:227–229

    Article  CAS  PubMed  Google Scholar 

  • Kaernbach C (2001) Slope bias of psychometric functions derived from adaptive data. Percept Psychophys 63:1389–1398

    Article  CAS  PubMed  Google Scholar 

  • Karmali F, Lim K, Merfeld DM (2014) Visual and vestibular perceptual thresholds each demonstrate better precision at specific frequencies and also exhibit optimal integration. J Neurophysiol 111:2393–2403

    Article  PubMed Central  PubMed  Google Scholar 

  • Kolev O, Mergner T, Kimmig H, Becker W (1996) Detection thresholds for object motion and self-motion during vestibular and visuo-oculomotor stimulation. Brain Res Bull 40:451–457

    Article  CAS  PubMed  Google Scholar 

  • Kollmeier B, Gilkey RH, Sieben UK (1988) Adaptive staircase techniques in psychoacoustics: a comparison of human data and a mathematical model. J Acoust Soc Am 83:1852–1862

    Article  CAS  PubMed  Google Scholar 

  • Kontsevich LL, Tyler CW (1999) Bayesian adaptive estimation of psychometric slope and threshold. Vision Res 39:2729–2737

    Article  CAS  PubMed  Google Scholar 

  • Leek MR (2001) Adaptive procedures in psychophysical research. Percept Psychophys 63:1279–1292

    Article  CAS  PubMed  Google Scholar 

  • Leek MR, Hanna TE, Marshall L (1992) Estimation of psychometric functions from adaptive tracking procedures. Percept Psychophys 51:247–256

    Article  CAS  PubMed  Google Scholar 

  • Levitt HCCH (1971) Transformed up-down methods in psychoacoustics. J Acoust Soc Am 49:467–477

    Article  PubMed  Google Scholar 

  • Lewis RF, Priesol AJ, Nicoucar K, Lim K, Merfeld DM (2011) Abnormal motion perception in vestibular migraine. Laryngoscope 121:1124–1125

    Article  PubMed Central  PubMed  Google Scholar 

  • Lim K, Merfeld DM (2012) Signal detection theory and vestibular perception: II. Fitting perceptual thresholds as a function of frequency. Exp Brain Res 222:303–320

    Article  PubMed Central  PubMed  Google Scholar 

  • MacNeilage PR, Banks MS, DeAngelis GC, Angelaki DE (2010) Vestibular heading discrimination and sensitivity to linear acceleration in head and world coordinates. J Neurosci 30:9084–9094

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models. Chapman and Hall, London

    Book  Google Scholar 

  • Merfeld DM (2011) Signal detection theory and vestibular thresholds: I. Basic theory and practical considerations. Exp Brain Res 210:389–405

    Article  PubMed Central  PubMed  Google Scholar 

  • Nakayama K, Tyler CW (1981) Psychophysical isolation of movement sensitivity by removal of familiar position cues. Vision Res 21:427–433

    Article  CAS  PubMed  Google Scholar 

  • Pentland A (1980) Maximum likelihood estimation: the best PEST. Percept Psychophys 28:377–379

    Article  CAS  PubMed  Google Scholar 

  • Rao CR (1945) Information and the accuracy attainable in the estimation of statistical parameters. Bull Calcutta Math Soc 37:81–89

    Google Scholar 

  • Roditi RE, Crane BT (2012a) Directional asymmetries and age effects in human self-motion perception. J Assoc Res Otolaryngol 13:381–401

    Article  PubMed Central  PubMed  Google Scholar 

  • Roditi RE, Crane BT (2012b) Suprathreshold asymmetries in human motion perception. Exp Brain Res 219:369–379

    Article  PubMed Central  PubMed  Google Scholar 

  • Shen Y, Dai W, Richards VM (2015) A MATLAB toolbox for the efficient estimation of the psychometric function using the updated maximum-likelihood adaptive procedure. Behav Res Methods 47:13–26

    Article  PubMed  Google Scholar 

  • Soyka F, Robuffo GP, Beykirch K, Bulthoff HH (2011) Predicting direction detection thresholds for arbitrary translational acceleration profiles in the horizontal plane. Exp Brain Res 209:95–107

    Article  PubMed Central  PubMed  Google Scholar 

  • Taylor MM (1971) On the efficiency of psychophysical measurement. J Acoust Soc Am 49(Suppl 8):505–508

    Article  PubMed  Google Scholar 

  • Taylor MM, Creelman CD (1967) PEST: efficient estimates on probability functions. J Acoust Soc Am 41:782–787

    Article  Google Scholar 

  • Treutwein B (1995) Adaptive psychophysical procedures. Vision Res 35:2503–2522

    Article  CAS  PubMed  Google Scholar 

  • Treutwein B, Strasburger H (1999) Fitting the psychometric function. Percept Psychophys 61:87–106

    Article  CAS  PubMed  Google Scholar 

  • Valko Y, Priesol AJ, Lewis RF, Merfeld DM (2012) Contributions of the vestibular labyrinth to human whole-body motion discrimination. J Neurosci 32:13537–13542

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van Trees HL, Bell KL, Tian Z (2013) Detection estimation and modulation theory, detection, estimation, and filtering theory. Wiley, New York

    Google Scholar 

  • Watson AB, Pelli DG (1983) QUEST: a Bayesian adaptive psychometric method. Percept Psychophys 33:113–120

    Article  CAS  PubMed  Google Scholar 

  • Watt RJ, Andrews DP (1981) APE: adaptive probit estimation of psychometric functions. Curr Psychol Rev 1:205–213

    Article  Google Scholar 

  • Wetherill GB (1963) sequential estimation of quantal response curves. J R Stat Soc B 25:1–48

    Google Scholar 

  • Wichmann FA, Hill NJ (2001a) The psychometric function: I. Fitting, sampling, and goodness of fit. Percept Psychophys 63:1293–1313

    Article  CAS  PubMed  Google Scholar 

  • Wichmann FA, Hill NJ (2001b) The psychometric function: II. Bootstrap-based confidence intervals and sampling. Percept Psychophys 63:1314–1329

    Article  CAS  PubMed  Google Scholar 

  • Zupan LH, Merfeld DM (2008) Interaural self-motion linear velocity thresholds are shifted by roll vection. Exp Brain Res 191:505–511

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the participation of our anonymous subjects. Marcos Mattana assisted with data collection. We thank Bob Grimes and Wangsong Gong for technical support. Harvard Orchestra provided high-capacity computation for simulations. This research was supported by the National Institute on Deafness and Other Communication Disorders (NIDCD) grants R01-DC04158, R56-DC12038 and R03-DC013635. Some of this work was previous described in an academic report of a Harvard School of Engineering and Applied Sciences undergraduate senior design project: Chaudhuri SE (2011) Protocol Design for Characterizing Vestibular Thresholds. The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faisal Karmali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmali, F., Chaudhuri, S.E., Yi, Y. et al. Determining thresholds using adaptive procedures and psychometric fits: evaluating efficiency using theory, simulations, and human experiments. Exp Brain Res 234, 773–789 (2016). https://doi.org/10.1007/s00221-015-4501-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-015-4501-8

Keywords

Navigation