Skip to main content
Log in

Integration of vestibular and gastrointestinal inputs by cerebellar fastigial nucleus neurons: multisensory influences on motion sickness

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Previous studies demonstrated that ingestion of the emetic compound copper sulfate (CuSO4) alters the responses to vestibular stimulation of a large fraction of neurons in brainstem regions that mediate nausea and vomiting, thereby affecting motion sickness susceptibility. Other studies suggested that the processing of vestibular inputs by cerebellar neurons plays a critical role in generating motion sickness and that neurons in the cerebellar fastigial nucleus receive visceral inputs. These findings raised the hypothesis that stimulation of gastrointestinal receptors by a nauseogenic compound affects the processing of labyrinthine signals by fastigial nucleus neurons. We tested this hypothesis in decerebrate cats by determining the effects of intragastric injection of CuSO4 on the responses of rostral fastigial nucleus to whole-body rotations that activate labyrinthine receptors. Responses to vestibular stimulation of fastigial nucleus neurons were more complex in decerebrate cats than reported previously in conscious felines. In particular, spatiotemporal convergence responses, which reflect the convergence of vestibular inputs with different spatial and temporal properties, were more common in decerebrate than in conscious felines. The firing rate of a small percentage of fastigial nucleus neurons (15 %) was altered over 50 % by the administration of CuSO4; the firing rate of the majority of these cells decreased. The responses to vestibular stimulation of a majority of these cells were attenuated after the compound was provided. Although these data support our hypothesis, the low fraction of fastigial nucleus neurons whose firing rate and responses to vestibular stimulation were affected by the administration of CuSO4 casts doubt on the notion that nauseogenic visceral inputs modulate motion sickness susceptibility principally through neural pathways that include the cerebellar fastigial nucleus. Instead, it appears that convergence of gastrointestinal and vestibular inputs occurs mainly in the brainstem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aleksandrov VG, Bagaev VA, Nozdrachev AD (1998) Gastric related neurons in the rat medial vestibular nucleus. Neurosci Lett 250:66–68

    Article  CAS  PubMed  Google Scholar 

  • Andrezik JA, Dormer KJ, Foreman RD, Person RJ (1984) Fastigial nucleus projections to the brain stem in beagles: pathways for autonomic regulation. Neurosci 11:497–507

    Article  CAS  Google Scholar 

  • Angaut P, Brodal A (1967) The projection of the “vestibulocerebellum” onto the vestibular nuclei in the cat. Arch Ital Biol 105:441–479

    CAS  PubMed  Google Scholar 

  • Arshian MS, Puterbaugh SR, Miller DJ, Catanzaro MF, Hobson CE, McCall AA, Yates BJ (2013) Effects of visceral inputs on the processing of labyrinthine signals by the inferior and caudal medial vestibular nuclei: ramifications for the production of motion sickness. Exp Brain Res 228:353–363

    Article  PubMed Central  PubMed  Google Scholar 

  • Baker J, Goldberg J, Hermann G, Peterson B (1984) Spatial and temporal response properties of secondary neurons that receive convergent input in vestibular nuclei of alert cats. Brain Res 294:138–143

    Article  CAS  PubMed  Google Scholar 

  • Balaban CD, Beryozkin G (1994) Vestibular nucleus projections to nucleus tractus solitarius and the dorsal motor nucleus of the vagus nerve: potential substrates for vestibulo-autonomic interactions. Exp Brain Res 98:200–212

    Article  CAS  PubMed  Google Scholar 

  • Bard P, Woolsey CN, Snider RS, Mountcastle VB, Bromiley RB (1947) Delimitation of central nervous mechanisms involved in motion sickness. Fed Proc 6:72

    CAS  PubMed  Google Scholar 

  • Brettler SC, Fuchs AF (2002) Role of caudal fastigial neurons during head-free gaze shifts in the monkey. Ann N Y Acad Sci 978:505–506

    Article  CAS  PubMed  Google Scholar 

  • Buttner U, Fuchs AF, Markert-Schwab G, Buckmaster P (1991) Fastigial nucleus activity in the alert monkey during slow eye and head movements. J Neurophysiol 65:1360–1371

    CAS  PubMed  Google Scholar 

  • Cai YL, Ma WL, Li M, Guo JS, Li YQ, Wang LG, Wang WZ (2007) Glutamatergic vestibular neurons express Fos after vestibular stimulation and project to the NTS and the PBN in rats. Neurosci Lett 417:132–137

    Article  CAS  PubMed  Google Scholar 

  • Carleton SC, Carpenter MB (1983) Afferent and efferent connections of the medial, inferior and lateral vestibular nuclei in the cat and monkey. Brain Res 278:29–51

    Article  CAS  PubMed  Google Scholar 

  • Chandler ML, Guilford G, Lawoko CR (1997) Radiopaque markers to evaluate gastric emptying and small intestinal transit time in healthy cats. J Vet Int Med 11:361–364

    Article  CAS  Google Scholar 

  • Chandler ML, Guilford WG, Lawoko CR, Whittem T (1999) Gastric emptying and intestinal transit times of radiopaque markers in cats fed a high-fiber diet with and without low-dose intravenous diazepam. Vet Radiol Ultrasound 40:3–8

    Article  CAS  PubMed  Google Scholar 

  • Cohen B, Dai M, Raphan T (2003) The critical role of velocity storage in production of motion sickness. Ann N Y Acad Sci 1004:359–376

    Article  PubMed  Google Scholar 

  • Cohen B, Dai M, Yakushin SB, Raphan T (2008) Baclofen, motion sickness susceptibility and the neural basis for velocity storage. Prog Brain Res 171:543–553

    Article  PubMed  Google Scholar 

  • Destefino VJ, Reighard DA, Sugiyama Y et al (2011) Responses of neurons in the rostral ventrolateral medulla to whole body rotations: comparisons in decerebrate and conscious cats. J Appl Physiol 110:1699–1707

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Endo K, Thomson DB, Wilson VJ, Yamaguchi T, Yates BJ (1995) Vertical vestibular input to and projections from the caudal parts of the vestibular nuclei of the decerebrate cat. J Neurophysiol 74:428–436

    CAS  PubMed  Google Scholar 

  • Gardner EP, Fuchs AF (1975) Single-unit responses to natural vestibular stimuli and eye movements in deep cerebellar nuclei of the alert rhesus monkey. J Neurophysiol 38:627–649

    CAS  PubMed  Google Scholar 

  • Homma Y, Nonaka S, Matsuyama K, Mori S (1995) Fastigiofugal projection to the brainstem nuclei in the cat: an anterograde PHA-L tracing study. Neurosci Res 23:89–102

    Article  CAS  PubMed  Google Scholar 

  • Jian BJ, Shintani T, Emanuel BA, Yates BJ (2002) Convergence of limb, visceral, and vertical semicircular canal or otolith inputs onto vestibular nucleus neurons. Exp Brain Res 144:247–257

    Article  CAS  PubMed  Google Scholar 

  • McCall AA, Moy JD, Puterbaugh SR, DeMayo WM, Yates BJ (2013) Responses of vestibular nucleus neurons to inputs from the hindlimb are enhanced following a bilateral labyrinthectomy. J Appl Physiol 114:742–751

    Article  PubMed Central  PubMed  Google Scholar 

  • Miller DM, Cotter LA, Gandhi NJ et al (2008a) Responses of caudal vestibular nucleus neurons of conscious cats to rotations in vertical planes, before and after a bilateral vestibular neurectomy. Exp Brain Res 188:175–186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miller DM, Cotter LA, Gandhi NJ et al (2008b) Responses of rostral fastigial nucleus neurons of conscious cats to rotations in vertical planes. Neurosci 155:317–325

    Article  CAS  Google Scholar 

  • Miller DM, Reighard DA, Mehta AS, Kalash R, Yates BJ (2009) Responses of thoracic spinal interneurons to vestibular stimulation. Exp Brain Res 195:89–100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mori S, Matsui T, Kuze B, Asanome M, Nakajima K, Matsuyama K (1998) Cerebellar-induced locomotion: reticulospinal control of spinal rhythm generating mechanism in cats. Ann N Y Acad Sci 860:94–105

    Article  CAS  PubMed  Google Scholar 

  • Mori S, Nakajima K, Mori F, Matsuyama K (2004) Integration of multiple motor segments for the elaboration of locomotion: role of the fastigial nucleus of the cerebellum. Prog Brain Res 143:341–351

    Article  PubMed  Google Scholar 

  • Moy JD, Miller DJ, Catanzaro MF et al (2012) Responses of neurons in the caudal medullary lateral tegmental field to visceral inputs and vestibular stimulation in vertical planes. Am J Physiol Regul Integr Comp Physiol 303:R929–R940

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Okahara K, Nisimaru N (1991) Climbing fiber responses evoked in lobule VII of the posterior cerebellum from a vagal nerve in rabbits. Neurosci Res 12:232–239

    Article  CAS  PubMed  Google Scholar 

  • Paton JF, La Noce A, Sykes RM, Sebastiani L, Bagnoli P, Ghelarducci B, Bradley DJ (1991) Efferent connections of lobule IX of the posterior cerebellar cortex in the rabbit—some functional considerations. J Auton Nerv Syst 36:209–224

    Article  CAS  PubMed  Google Scholar 

  • Porter JD, Balaban CD (1997) Connections between the vestibular nuclei and brain stem regions that mediate autonomic function in the rat. J Vestib Res 7:63–76

    Article  CAS  PubMed  Google Scholar 

  • Precht W, Volkind R, Maeda M, Giretti ML (1976) The effects of stimulating the cerebellar nodulus in the cat on the responses of vestibular neurons. Neurosci 1:301–312

    Article  CAS  Google Scholar 

  • Reason JT (1978) Motion sickness adaptation: a neural mismatch model. J R Soc Med 71:819–829

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reason JT, Brand JJ (1975) Motion sickness. Academic Press, London

    Google Scholar 

  • Robinson FR, Fuchs AF (2001) The role of the cerebellum in voluntary eye movements. Ann Rev Neurosci 24:981–1004

    Article  CAS  PubMed  Google Scholar 

  • Ruggiero D, Batton RR 3rd, Jayaraman A, Carpenter MB (1977) Brain stem afferents to the fastigial nucleus in the cat demonstrated by transport of horseradish peroxidase. J Comp Neurol 172:189–209

    Article  CAS  PubMed  Google Scholar 

  • Saab CY, Willis WD (2001) Nociceptive visceral stimulation modulates the activity of cerebellar Purkinje cells. Exp Brain Res 140:122–126

    Article  CAS  PubMed  Google Scholar 

  • Schor RH, Angelaki DE (1992) The algebra of neural response vectors. Ann N Y Acad Sci 656:190–204

    Article  CAS  PubMed  Google Scholar 

  • Schor RH, Miller AD, Tomko DL (1984) Responses to head tilt in cat central vestibular neurons. I. Direction of maximum sensitivity. J Neurophysiol 51:136–146

    CAS  PubMed  Google Scholar 

  • Shaikh AG, Ghasia FF, Dickman JD, Angelaki DE (2005) Properties of cerebellar fastigial neurons during translation, rotation, and eye movements. J Neurophysiol 93:853–863

    Article  PubMed  Google Scholar 

  • Shapiro RE, Miselis RR (1985) The central neural connections of the area postrema of the rat. J Comp Neurol 234:344–364

    Article  CAS  PubMed  Google Scholar 

  • Shojaku H, Sato Y, Ikarashi K, Kawasaki T (1987) Topographical distribution of Purkinje cells in the uvula and the nodulus projecting to the vestibular nuclei in cats. Brain Res 416:100–112

    Article  CAS  PubMed  Google Scholar 

  • Siebold C, Glonti L, Glasauer S, Buttner U (1997) Rostral fastigial nucleus activity in the alert monkey during three-dimensional passive head movements. J Neurophysiol 77:1432–1446

    CAS  PubMed  Google Scholar 

  • Somana R, Walberg F (1979) Cerebellar afferents from the nucleus of the solitary tract. Neurosci Lett 11:41–47

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama Y, Suzuki T, DeStefino VJ, Yates BJ (2011) Integrative responses of neurons in nucleus tractus solitarius to visceral afferent stimulation and vestibular stimulation in vertical planes. Am J Physiol Regul Integr Comp Physiol 301:R1380–R1390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki T, Sugiyama Y, Yates BJ (2012) Integrative responses of neurons in parabrachial nuclei to a nauseogenic gastrointestinal stimulus and vestibular stimulation in vertical planes. Am J Physiol Regul Integr Comp Physiol 302:R965–R975

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thach WT, Goodkin HP, Keating JG (1992) The cerebellum and the adaptive coordination of movement. Annu Rev Neurosci 15:403–442

    Article  CAS  PubMed  Google Scholar 

  • Tong G, Robertson LT, Brons J (1993) Climbing fiber representation of the renal afferent nerve in the vermal cortex of the cat cerebellum. Brain Res 601:65–75

    Article  CAS  PubMed  Google Scholar 

  • Tyler DB, Bard P (1949) Motion sickness. Physiol Rev 29:311–369

    CAS  PubMed  Google Scholar 

  • Walberg F, Dietrichs E (1988) The interconnection between the vestibular nuclei and the nodulus: a study of reciprocity. Brain Res 449:47–53

    Article  CAS  PubMed  Google Scholar 

  • Wang SC, Chinn HI (1956) Experimental motion sickness in dogs; importance of labyrinth and vestibular cerebellum. Am J Physiol 185:617–623

    CAS  PubMed  Google Scholar 

  • Yates BJ, Grelot L, Kerman IA, Balaban CD, Jakus J, Miller AD (1994) Organization of vestibular inputs to nucleus tractus solitarius and adjacent structures in cat brain stem. Am J Physiol 267:R974–R983

    CAS  PubMed  Google Scholar 

  • Yates BJ, Balaban CD, Miller AD, Endo K, Yamaguchi Y (1995) Vestibular inputs to the lateral tegmental field of the cat: potential role in autonomic control. Brain Res 689:197–206

    Article  CAS  PubMed  Google Scholar 

  • Yates BJ, Catanzaro MF, Miller DJ, McCall AA (2014) Integration of vestibular and emetic gastrointestinal signals that produce nausea and vomiting: potential contributions to motion sickness. Exp Brain Res: in press

  • Zheng ZH, Dietrichs E, Walberg F (1982) Cerebellar afferent fibres from the dorsal motor vagal nucleus in the cat. Neurosci Lett 32:113–118

    Article  CAS  PubMed  Google Scholar 

  • Zimnicka AM, Ivy K, Kaplan JH (2011) Acquisition of dietary copper: a role for anion transporters in intestinal apical copper uptake. Am J Physiol Cell Physiol 300:C588–C599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Danielle Akinsanmi, George Bourdages, Bret Boyle, Alex Carter, Valerie Casuccio, Thomas Cooper, Bryant Fischer, and Nevin Sastry for technical assistance. Funding was provided by Grant R01-DC003732 from the National Institutes of Health (USA). Michael F. Catanzaro was supported by an American Physiological Society Undergraduate Research Excellence Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bill J. Yates.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catanzaro, M.F., Miller, D.J., Cotter, L.A. et al. Integration of vestibular and gastrointestinal inputs by cerebellar fastigial nucleus neurons: multisensory influences on motion sickness. Exp Brain Res 232, 2581–2589 (2014). https://doi.org/10.1007/s00221-014-3898-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-3898-9

Keywords

Navigation