Skip to main content

Vestibular Nuclei and Their Cerebellar Connections

  • Chapter
  • First Online:
Essentials of Cerebellum and Cerebellar Disorders
  • 169 Accesses

Abstract

The vestibular nuclei and the vestibulocerebellum comprise the anatomical crossroads where primary vestibular information is collected, stored, and modified by other sensory inputs (visual, proprioceptive, autonomic) and central cortical commands. Secondary vestibular neurons are clustered into five nuclei in which different subsets of vestibular primary afferents terminate. This distributed organization may be based on the targeted outputs of the clustered secondary neurons rather than on selective afferent targeting. Vestibular primary and secondary afferent mossy fibers activate a large mediolateral extent of granule cells in multiple folia of vermal lobules IX–X. However, the vermal and hemispheric lobules IX–X are organized in three dimensions by vestibular and visual climbing fiber inputs that are arrayed in narrow sagittal strips. In vermal lobules IX–X, these climbing fiber strips encode linear acceleration imposed by changes in head movement with respect to gravity using the utricular otoliths and angular acceleration of the head about the anatomical axes of the two vertical semicircular canals. Hemispheric lobule X encodes self-motion using climbing fiber structured optokinetic feedback imposed by the three axes of the semicircular canals. Vestibular and visual adaptation of this circuitry is needed to maintain balance during postural perturbations. Secondary neurons in the vestibular nuclei and cerebellar neurons may contribute to storage and modification of postural reflexes. Compensation of postural reflexes following unilateral damage to the vestibular nerve provokes changes in cellular expression of protein kinase C-δ without causing a change in transcription of PKC-δ mRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abend WK (1977) Functional organization of the superior vestibular nucleus of the squirrel monkey. Brain Res 132:65–84

    Article  CAS  PubMed  Google Scholar 

  • Akaogi K-I, Sato Y, Ikarashi K, Kawasaki T (1994) Mossy fiber projections from the brain stem to the nodulus in the cat. An experimental study comparing the nodulus, the uvula and the flocculus. Brain Res 638:12–20

    Article  CAS  PubMed  Google Scholar 

  • Akbarian S, Grusser OJ, Guldin WO (1993) Corticofugal projections to the vestibular nuclei in squirrel–monkeys—further evidence of multiple cortical vestibular fields. J Comp Neurol 332:89–104

    Article  CAS  PubMed  Google Scholar 

  • Akbarian S, Grüsser O-J, Guldin WO (1994) Corticofugal connections between the cerebral cortex and brainstem vestibular nuclei in the macaque monkey. J Comp Neurol 339:421–437

    Article  CAS  PubMed  Google Scholar 

  • Andersson G, Oscarsson O (1978a) Projections to lateral vestibular nucleus from cerebellar climbing fiber zones. Exp Brain Res 32:549–564

    CAS  PubMed  Google Scholar 

  • Andersson G, Oscarsson O (1978b) Climbing fiber microzones in cerebellar vermis and their projection to different groups of cells in the lateral vestibular nucleus. Exp Brain Res 32:565–579

    CAS  PubMed  Google Scholar 

  • Azzi A, Boscoboinik D, Hensey C (1992) The protein kinase C family. Eur J Biochem 208:547–557

    Article  CAS  PubMed  Google Scholar 

  • Bacskai T, Szekely G, Matesz C (2002) Ascending and descending projections of the lateral vestibular nucleus in the rat. Acta Biol Hung 53:7–21

    Article  PubMed  Google Scholar 

  • Bankoul S, Neuhuber WL (1990) A cervical primary afferent input to vestibular nuclei as demonstrated by retrograde transport of wheat germ agglutinin-horseradish peroxidase in the rat. Exp Brain Res 79:405–411

    Article  CAS  PubMed  Google Scholar 

  • Barmack NH (2003) Central vestibular system: vestibular nuclei and posterior cerebellum. Brain Res Bull 60:511–541

    Article  PubMed  Google Scholar 

  • Barmack NH, Yakhnitsa V (2000) Vestibular signals in the parasolitary nucleus. J Neurophysiol 83:3559–3569

    Article  CAS  PubMed  Google Scholar 

  • Barmack NH, Yakhnitsa V (2003) Cerebellar climbing fibers modulate simple spikes in cerebellar Purkinje cells. J Neurosci 23:7904–7916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barmack NH, Yakhnitsa V (2008) Functions of interneurons in mouse cerebellum. J Neurosci 28:1140–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barmack NH, Yakhnitsa V (2013) Modulated discharge of Purkinje and stellate cells persists after unilateral loss of vestibular primary afferent mossy fibers in mice. J Neurophysiol 110:2257–2274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barmack NH, Henkel CK, Pettorossi VE (1979) A subparafascicular projection to the medial vestibular nucleus of the rabbit. Brain Res 172:339–343

    Article  CAS  PubMed  Google Scholar 

  • Barmack NH, Nastos MA, Pettorossi VE (1981) The horizontal and vertical cervico-ocular reflexes of the rabbit. Brain Res 224:261–278

    Article  CAS  PubMed  Google Scholar 

  • Barmack NH, Baughman RW, Eckenstein FP (1992a) Cholinergic innervation of the cerebellum of rat, rabbit, cat and monkey as revealed by choline acetyltransferase activity and immunohistochemistry. J Comp Neurol 317:233–249

    Article  CAS  PubMed  Google Scholar 

  • Barmack NH, Baughman RW, Eckenstein FP (1992b) Cholinergic innervation of the cerebellum of the rat by secondary vestibular afferents. In: Cohen B, Tomko DL, Guedry F (eds) Sensing and controlling motion: vestibular and sensorimotor function. New York Academy of Sciences, New York, pp 566–579

    Google Scholar 

  • Barmack NH, Baughman RW, Eckenstein FP, Shojaku H (1992c) Secondary vestibular cholinergic projection to the cerebellum of rabbit and rat as revealed by choline acetyltransferase immunohistochemistry, retrograde and orthograde tracers. J Comp Neurol 317:250–270

    Article  CAS  PubMed  Google Scholar 

  • Barmack NH, Fagerson M, Errico P (1993a) Cholinergic projection to the dorsal cap of the inferior olive of the rat, rabbit and monkey. J Comp Neurol 328:263–281

    Article  CAS  PubMed  Google Scholar 

  • Barmack NH, Baughman RW, Errico P, Shojaku H (1993b) Vestibular primary afferent projection to the cerebellum of the rabbit. J Comp Neurol 327:521–534

    Article  CAS  PubMed  Google Scholar 

  • Barmack NH, Fagerson M, Fredette BJ, Mugnaini E, Shojaku H (1993c) Activity of neurons in the beta nucleus of the inferior olive of the rabbit evoked by natural vestibular stimulation. Exp Brain Res 94:203–215

    Article  CAS  PubMed  Google Scholar 

  • Barmack NH, Fredette BJ, Mugnaini E (1998a) Parasolitary nucleus: a source of GABAergic vestibular information to the inferior olive of rat and rabbit. J Comp Neurol 392:352–372

    Article  CAS  PubMed  Google Scholar 

  • Barmack NH, Park S-H, Mugnaini E (1998b) Vestibular modulation of neuronal activity in the parasolitary nucleus of the rabbit. Soc Neurosci 24:1405

    Google Scholar 

  • Barmack NH, Qian Z-Y, Yoshimura J (2000) Regional and cellular distribution of protein kinase C in rat cerebellar Purkinje cells. J Comp Neurol 427:235–254

    Article  CAS  PubMed  Google Scholar 

  • Barmack NH, Qian Z-Y, Kim HJ, Yoshimura J (2001) Activity-dependent distribution of protein kinase C-δ in rat cerebellar Purkinje cells following unilateral labyrinthectomy. Exp Brain Res 141:6–20

    Article  CAS  PubMed  Google Scholar 

  • Beckman ML, Bernstein EM, Quick MW (1968) Protein kinase C regulates the interaction between a GABA transporter and syntaxin 1A. J Neurosci 18:6103–6112

    Google Scholar 

  • Bernard J-F (1987) Topographical organization of olivocerebellar and corticonuclear connections in the rat—an WGA-HRP study: I. Lobules IX, X, and the flocculus. J Comp Neurol 263:241–258

    Article  CAS  PubMed  Google Scholar 

  • Billig I, Balaban CD (2004) Zonal organization of the vestibulo-cerebellum in the control of horizontal extraocular muscles using pseudorabies virus: I. Flocculus/ventral paraflocculus. Neuroscience 125:507–520

    Article  CAS  PubMed  Google Scholar 

  • Brodal A (1972) Anatomy of the vestibuloreticular connections and possible "ascending" vestibular pathways from the reticular formation. In: Brodal A, Pompeiano O (eds) Basic aspects of central vestibular mechanisms. Progress in brain research, vol 37. Elsevier, Amsterdam

    Google Scholar 

  • Brodal A (1974) Anatomy of the vestibular nuclei and their connections. In: Kornhuber HH (ed) Handbook of sensory physiology, vestibular system, morphology, vol 6. Springer, Berlin

    Google Scholar 

  • Brodal A (1981) Neurological anatomy, 3rd edn. Oxford University Press, New York

    Google Scholar 

  • Brodal A, Pompeiano O (1957) The vestibular nuclei in the cat. J Anat 91:438–454

    CAS  PubMed  PubMed Central  Google Scholar 

  • Büttner U, Lang W (1979) The vestibulocortical pathway: neurophysiological and anatomical studies in the monkey. In: Granit R, Pompeiano O (eds) Reflex control of posture and movement. Elsevier, Amsterdam, pp 581–588

    Chapter  Google Scholar 

  • Büttner-Ennever J (1992) Patterns of connectivity in the vestibular nuclei. In: Cohen B, Tomko DL, Guedry F (eds) Sensing and controlling motion. Annals of the New York Academy of Sciences, New York, pp 363–378

    Google Scholar 

  • Cajal SR (1911) Histologie du système nerveux de l'homme et des vertebrés. Maloine, Paris

    Google Scholar 

  • De Zeeuw CI, Wentzel P, Mugnaini E (1993) Fine structure of the dorsal cap of the inferior olive and its GABAergic and non-GABAergic input from the nucleus prepositus hypoglossi in rat and rabbit. J Comp Neurol 327:63–82

    Article  PubMed  Google Scholar 

  • De Zeeuw CI, Hansel C, Bian F, Koekkoek SK, Van Alphen AM, Linden DJ, Oberdick J (1998) Expression of a protein kinase C inhibitor in Purkinje cells blocks cerebellar LTD and adaptation of the vestibulo-ocular reflex. Neuron 20:495–508

    Article  PubMed  Google Scholar 

  • Deecke L, Schwarz DWF, Fredrickson JM (1977) Vestibular responses in the rhesus monkey ventroposterior thalamus. II. Vestibulo-proprioceptive convergence at thalamic neurons. Exp Brain Res 30:219–232

    CAS  PubMed  Google Scholar 

  • Epema AH, Gerrits NM, Voogd J (1988) Commissural and intrinsic connections of the vestibular nuclei in the rabbit: a retrograde labeling study. Exp Brain Res 71:129–146

    Article  CAS  PubMed  Google Scholar 

  • Epema AH, Gerrits NM, Voogd J (1990) Secondary vestibulocerebellar projections to the flocculus and uvulo-nodular lobule of the rabbit: a study using HRP and double fluorescent tracer techniques. Exp Brain Res 80:72–82

    Article  CAS  PubMed  Google Scholar 

  • Fagerson MH, Barmack NH (1995) Responses to vertical vestibular stimulation of neurons in the nucleus reticularis gigantocellularis in rabbits. J Neurophysiol 73:2378–2391

    Article  CAS  PubMed  Google Scholar 

  • Foster IZ, Hanes DA, Barmack NH, McCollum G (2007) Spatial symmetries in vestibular projections to the uvula-nodulus. Biol Cybern 96:439–453

    Article  PubMed  Google Scholar 

  • Fukushima K (1997) Corticovestibular interactions: anatomy, electrophysiology, and functional considerations. Exp Brain Res 117:1–16

    Article  CAS  PubMed  Google Scholar 

  • Fushiki H, Barmack NH (1997) Topography and reciprocal activity of cerebellar Purkinje cells in the uvula-nodulus modulated by vestibular stimulation. J Neurophysiol 78:3083–3094

    Article  CAS  PubMed  Google Scholar 

  • Gerrits NM, Epema AH, Van Linge A, Dalm E (1989) The primary vestibulocerebellar projection in the rabbit: absence of primary afferents in the flocculus. Neurosci Lett 105:27–33

    Article  CAS  PubMed  Google Scholar 

  • Graf W, McCrea RA, Baker R (1983) Morphology of posterior canal related secondary vestibular neurons in rabbit and cat. Exp Brain Res 52:125–138

    Article  CAS  PubMed  Google Scholar 

  • Henn V, Young L, Finley C (1974) Vestibular nucleus units in alert monkeys are also influenced by moving visual fields. Brain Res 71:144–149

    Article  CAS  PubMed  Google Scholar 

  • Hikosaka O, Maeda K (1973) Cervical effects on abducens motoneurons and their interaction with vestibulo-ocular reflex. Exp Brain Res 18:512–530

    Article  CAS  PubMed  Google Scholar 

  • Ilg UJ, Hoffmann KP (1996) Responses of neurons of the nucleus of the optic tract and the dorsal terminal nucleus of the accessory optic tract in the awake monkey. Eur J Neurosci 8:92–105

    Article  CAS  PubMed  Google Scholar 

  • Ito M, Karachot L (1992) Protein kinases and phosphatase inhibitors mediating long-term desensitization of glutamate receptors in cerebellar Purkinje cells. Neurosci Res 14:27–38

    Article  CAS  PubMed  Google Scholar 

  • Ito JI, Matsuoka I, Sasa M, Takaori S (1985) Commissural and ipsilateral internuclear connection of vestibular nuclear complex of the cat. Brain Res 341:73–81

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann H, Biaggioni I, Voustianiouk A, Diedrich A, Costa F, Clarke R, Gizzi M, Raphan T, Cohen B (2002) Vestibular control of sympathetic activity—an otolith-sympathetic reflex in humans. Exp Brain Res 143:463–469

    Article  CAS  PubMed  Google Scholar 

  • Kerman IA, McAllen RM, Yates BJ (2000) Patterning of sympathetic nerve activity in response to vestibular stimulation. Brain Res Bull 53:11–16

    Article  CAS  PubMed  Google Scholar 

  • Kevetter GA, Perachio A (1986) Distribution of vestibular afferents that innervate the sacculus and posterior canal in the gerbil. J Comp Neurol 254:410–424

    Article  CAS  PubMed  Google Scholar 

  • Korte G, Mugnaini E (1979) The cerebellar projection of the vestibular nerve in the cat. J Comp Neurol 184:265–278

    Article  CAS  PubMed  Google Scholar 

  • Kumoi K, Saito N, Tanaka C (1987) Immunohistochemical localization of γ-aminobutyric acid- and aspartate-containing neurons in the guinea pig vestibular nuclei. Brain Res 416:22–23

    Article  CAS  PubMed  Google Scholar 

  • Lang W, Büttner-Ennever JA, Büttner U (1979) Vestibular projections to the monkey thalamus: an autoradiographic study. Brain Res 177:3–17

    Article  CAS  PubMed  Google Scholar 

  • Leigh RJ (1994) Human vestibular cortex. Ann Neurol 35:383–384

    Article  CAS  PubMed  Google Scholar 

  • Maklad A, Fritzsch B (2003) Partial segregation of posterior crista and saccular fibers to the nodulus and uvula of the cerebellum in mice, and its development. Dev Brain Res 140:223–236

    Article  CAS  Google Scholar 

  • McCabe BF, Ryu JH (1969) Experiments on vestibular compensation. Laryngoscope 79:1728–1736

    Article  CAS  PubMed  Google Scholar 

  • McCouch GP, Deering ID, Ling TH (1951) Location of receptors for tonic neck reflexes. J Neurophysiol 14:191–196

    Article  CAS  PubMed  Google Scholar 

  • McCrea RA, Baker R (1985) Anatomical connections of the nucleus prepositus of the cat. J Comp Neurol 237:377–407

    Article  CAS  PubMed  Google Scholar 

  • Montarolo PG, Palestini M, Strata P (1982) The inhibitory effect of the olivocerebellar input on the cerebellar Purkinje cells in the rat. J Physiol 332:187–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newlands SD, Kevetter GA, Perachio AA (1989) A quantitative study of the vestibular commissures in the gerbil. Brain Res 487:152–157

    Article  CAS  PubMed  Google Scholar 

  • Newlands SD, Purcell IM, Kevetter GA, Perachio AA (2002) Central projections of the utricular nerve in the gerbil. J Comp Neurol 452:11–23

    Article  PubMed  Google Scholar 

  • Newlands SD, Vrabec JT, Purcell IM, Stewart CM, Zimmerman BE, Perachio AA (2003) Central projections of the saccular and utricular nerves in macaques. J Comp Neurol 466:31–47

    Article  PubMed  Google Scholar 

  • Nishiike S, Guldin WO, Bäurle J (2000) Corticofugal connections between the cerebral cortex and the vestibular nuclei in the rat. J Comp Neurol 420:363–372

    Article  CAS  PubMed  Google Scholar 

  • Palkovits M, Magyar P, Szentagothai J (1972) Quantitative histological analysis of the cerebellar cortex in the cat. IV. Mossy fiber-Purkinje cell numerical transfer. Brain Res 45:15–29

    Article  CAS  PubMed  Google Scholar 

  • Prihoda M, Hiller MS, Mayr R (1991) Central projections of cervical primary afferent-fibers in the Guinea-pig—an HRP and WGA/HRP tracer study. J Comp Neurol 308:418–431

    Article  CAS  PubMed  Google Scholar 

  • Purcell IM, Perachio AA (2001) Peripheral patterns of terminal innervation of vestibular primary afferent neurons projecting to the vestibulocerebellum in the gerbil. J Comp Neurol 433:48–61

    Article  CAS  PubMed  Google Scholar 

  • Qian Z-Y, Barmack NH (1996) Distribution of protein kinase C-δ in cerebellar Purkinje cells following unilateral labyrinthectomy in rat. Soc Neurosci 22:1832–1832

    Google Scholar 

  • Qian Z, Micorescu M, Yakhnitsa V, Barmack NH (2012) Climbing fiber activity reduces 14-3-3-θ regulated GABAA receptor phosphorylation in cerebellar Purkinje cells. Neuroscience 201:34–45

    Article  CAS  PubMed  Google Scholar 

  • Rose PK, Wainwright K, Neuber-Hess M (1992) Connections from the lateral vestibular nucleus to the upper cervical spinal cord of the cat: a study with the anterograde tracer PHA-L. J Comp Neurol 321:312–324

    Article  CAS  PubMed  Google Scholar 

  • Rossiter CD, Hayden NL, Stocker SD, Yates BJ (1996) Changes in outflow to respiratory pump muscles produced by natural vestibular stimulation. J Neurophysiol 76:3274–3284

    Article  CAS  PubMed  Google Scholar 

  • Sato F, Sasaki H (1993) Morphological correlations between spontaneously discharging primary vestibular afferents and vestibular nucleus neurons in the cat. J Comp Neurol 333:554–556

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Kanda K-I, Ikarashi K, Kawasaki T (1989) Differential mossy fiber projections to the dorsal and ventral uvula in the cat. J Comp Neurol 279:149–164

    Article  CAS  PubMed  Google Scholar 

  • Sato H, Ohkawa T, Uchino Y, Wilson VJ (1997) Excitatory connections between neurons of the central cervical nucleus and vestibular neurons in the cat. Exp Brain Res 115:381–386

    Article  CAS  PubMed  Google Scholar 

  • Shiroyama T, Kayahara T, Yasui Y, Nomura J, Nakano K (1999) Projections of the vestibular nuclei to the thalamus in the rat: a Phaseolus vulgaris leucoagglutinin study. J Comp Neurol 407:318–332

    Article  CAS  PubMed  Google Scholar 

  • Shojaku H, Sato Y, Ikarashi K, Kawasaki T (1987) Topographical distribution of Purkinje cells in the uvula and the nodulus projecting to the vestibular nuclei in cats. Brain Res 416:100–112

    Article  CAS  PubMed  Google Scholar 

  • Simpson JI, Graf W, Leonard C (1981) The coordinate system of visual climbing fibers to the flocculus. In: Fuchs AF, Becker W (eds) Developments in neuroscience, vol 12: progress in oculomotor research. Elsevier, Amsterdam, pp 475–484

    Google Scholar 

  • Simpson JI, Leonard CS, Soodak RE (1988) The accessory optic-system—analyzer of self-motion. Ann N Y Acad Sci 545:170–179

    Article  CAS  PubMed  Google Scholar 

  • Sossin WS, Schwartz JH (1993) Ca2+-independent protein kinase Cs contain an amino-terminal domain similar to the C2 consensus sequence. Trends Biochem Sci 18:207–208

    Article  CAS  PubMed  Google Scholar 

  • Tabuchi T, Umetani T, Yamadori T (1989) Corticonuclear and corticovestibular projections from the uvula in the albino rat: differential projections from sublobuli of the uvula. Brain Res 492:176–186

    Article  CAS  PubMed  Google Scholar 

  • Tago H, McGeer PL, McGeer EG, Akiyama H, Hersh LB (1989) Distribution of choline acetyltransferase immunopositive structures in the rat brainstem. Brain Res 495:271–297

    Article  CAS  PubMed  Google Scholar 

  • Thunnissen IE, Epema AH, Gerrits NM (1989) Secondary vestibulocerebellar mossy fiber projection to the caudal vermis in the rabbit. J Comp Neurol 290:262–277

    Article  CAS  PubMed  Google Scholar 

  • Van der Steen J, Simpson JI, Tan J (1994) Functional and anatomic organization of three-dimensional eye movements in rabbit cerebellar flocculus. J Neurophysiol 72:31–46

    Article  PubMed  Google Scholar 

  • Walberg F, Dietrichs E (1988) The interconnection between the vestibular nuclei and the nodulus: a study of reciprocity. Brain Res 449:47–53

    Article  CAS  PubMed  Google Scholar 

  • Wayman GA, Davare M, Ando H, Fortin D, Varlamova O, Cheng HY, Marks D, Obrietan K, Soderling TR, Goodman RH, Impey S (2008) An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc Natl Acad Sci U S A 105:9093–9098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu HS, Sugihara I, Shinoda Y (1999) Projection patterns of single mossy fibers originating from the lateral reticular nucleus in the rat cerebellar cortex and nuclei. J Comp Neurol 411:97–118

    Article  CAS  PubMed  Google Scholar 

  • Yakusheva T, Blazquez PM, Angelaki DE (2010) Relationship between complex and simple spike activity in macaque caudal vermis during three-dimensional vestibular stimulation. J Neurosci 30:8111–8126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neal H. Barmack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barmack, N.H. (2023). Vestibular Nuclei and Their Cerebellar Connections. In: Gruol, D.L., Koibuchi, N., Manto, M., Molinari, M., Schmahmann, J.D., Shen, Y. (eds) Essentials of Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-031-15070-8_8

Download citation

Publish with us

Policies and ethics