Skip to main content

Advertisement

Log in

Effects of visceral inputs on the processing of labyrinthine signals by the inferior and caudal medial vestibular nuclei: ramifications for the production of motion sickness

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Neurons located in the caudal aspect of the vestibular nucleus complex have been shown to receive visceral inputs and project to brainstem regions that participate in generating emesis, such as nucleus tractus solitarius and the “vomiting region” in the lateral tegmental field (LTF). Consequently, it has been hypothesized that neurons in the caudal vestibular nuclei participate in triggering motion sickness and that visceral inputs to the vestibular nucleus complex can affect motion sickness susceptibility. To obtain supporting evidence for this hypothesis, we determined the effects of intragastric infusion of copper sulfate (CuSO4) on responses of neurons in the inferior and caudal medial vestibular nuclei to rotations in vertical planes. CuSO4 readily elicits nausea and emesis by activating gastrointestinal (GI) afferents. Infusion of CuSO4 produced a >30 % change in spontaneous firing rate of approximately one-third of neurons in the caudal aspect of the vestibular nucleus complex. These changes in firing rate developed over several minutes, presumably in tandem with the emetic response. The gains of responses to vertical vestibular stimulation of a larger fraction (approximately two-thirds) of caudal vestibular nucleus neurons were altered over 30 % by administration of CuSO4. The response gains of some units went up, and others went down, and there was no significant relationship with concurrent spontaneous firing rate change. These findings support the notion that the effects of visceral inputs on motion sickness susceptibility are mediated in part through the caudal vestibular nuclei. However, our previous studies showed that infusion of CuSO4 produced larger changes in response to vestibular stimulation of LTF neurons, as well as parabrachial nucleus neurons that are believed to participate in generating nausea. Thus, integrative effects of GI inputs on the processing of labyrinthine inputs must occur at brain sites that participate in eliciting motion sickness in addition to the caudal vestibular nuclei. It seems likely that the occurrence of motion sickness requires converging inputs to brain areas that generate nausea and vomiting from a variety of regions that process vestibular signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson JH, Blanks RHI, Precht W (1978) Response characteristics of semicircular canal and otolith systems in the cat. I. Dynamic responses of primary vestibular fibers. Exp Brain Res 32:491–507

    PubMed  CAS  Google Scholar 

  • Andrezik JA, Dormer KJ, Foreman RD, Person RJ (1984) Fastigial nucleus projections to the brain stem in beagles: pathways for autonomic regulation. Neuroscience 11:497–507

    Article  PubMed  CAS  Google Scholar 

  • Angaut P, Brodal A (1967) The projection of the “vestibulocerebellum” onto the vestibular nuclei in the cat. Arch Ital Biol 105:441–479

    PubMed  CAS  Google Scholar 

  • Ariumi H, Saito R, Nago S, Hyakusoku M, Takano Y, Kamiya H (2000) The role of tachykinin NK-1 receptors in the area postrema of ferrets in emesis. Neurosci Lett 286:123–126

    Article  PubMed  CAS  Google Scholar 

  • Baker J, Goldberg J, Hermann G, Peterson B (1984) Spatial and temporal response properties of secondary neurons that receive convergent input in vestibular nuclei of alert cats. Brain Res 294:138–143

    Article  PubMed  CAS  Google Scholar 

  • Balaban CD (1996) Vestibular nucleus projections to the parabrachial nucleus in rabbits: implications for vestibular influences on the autonomic nervous system. Exp Brain Res 108:367–381

    Article  PubMed  CAS  Google Scholar 

  • Balaban CD, Beryozkin G (1994) Vestibular nucleus projections to nucleus tractus solitarius and the dorsal motor nucleus of the vagus nerve: potential substrates for vestibulo-autonomic interactions. Exp Brain Res 98:200–212

    Article  PubMed  CAS  Google Scholar 

  • Balaban CD, Jacob RG, Furman JM (2011) Neurologic bases for comorbidity of balance disorders, anxiety disorders and migraine: neurotherapeutic implications. Expert Rev Neurother 11:379–394

    Article  PubMed  Google Scholar 

  • Berkley KJ, Scofield SL (1990) Relays from the spinal cord and solitary nucleus through the parabrachial nucleus to the forebrain in the cat. Brain Res 529:333–338

    Article  PubMed  CAS  Google Scholar 

  • Berman AI (1968) The brain stem of the cat. University of Wisconsin Press, Madison

    Google Scholar 

  • Billig I, Yates BJ, Rinaman L (2001) Plasma hormone levels and central c-Fos expression in ferrets after systemic administration of cholecystokinin. Am J Physiol Regul Integr Comp Physiol 281:R1243–R1255

    PubMed  CAS  Google Scholar 

  • Borison HL, Wang SC (1949) Functional localization of central coordinating mechanism for emesis in cat. J Neurophysiol 12:305–313

    PubMed  CAS  Google Scholar 

  • Borison HL, Wang SC (1953) Physiology and pharmacology of vomiting. Pharmacol Rev 5:193–230

    PubMed  CAS  Google Scholar 

  • Bountra C, Bunce K, Dale T, Gardner C, Jordan C, Twissell D, Ward P (1993) Anti-emetic profile of a non-peptide neurokinin NK1 receptor antagonist, CP-99,994, in ferrets. Eur J Pharmacol 249:R3–R4

    Article  PubMed  CAS  Google Scholar 

  • Brizzee KR, Marshall KR (1960) Developmental studies on emetic response to tartar emetic and copper sulfate in the cat. Proc Soc Exp Biol Med 103:839–842

    Article  PubMed  CAS  Google Scholar 

  • Cai YL, Ma WL, Li M, Guo JS, Li YQ, Wang LG, Wang WZ (2007) Glutamatergic vestibular neurons express Fos after vestibular stimulation and project to the NTS and the PBN in rats. Neurosci Lett 417:132–137

    Article  PubMed  CAS  Google Scholar 

  • Carleton SC, Carpenter MB (1983) Afferent and efferent connections of the medial, inferior and lateral vestibular nuclei in the cat and monkey. Brain Res 278:29–51

    Article  PubMed  CAS  Google Scholar 

  • Cechetto DF, Calaresu FR (1985) Central pathways relaying cardiovascular afferent information to amygdala. Am J Physiol 248:R38–R45

    PubMed  CAS  Google Scholar 

  • Cechetto DF, Ciriello J, Calaresu FR (1983) Afferent connections to cardiovascular sites in the amygdala: a horseradish peroxidase study in the cat. J Auton Nerv Syst 8:97–110

    Article  PubMed  CAS  Google Scholar 

  • Cheung BS, Money KE, Jacobs I (1990) Motion sickness susceptibility and aerobic fitness: a longitudinal study. Aviat Space Environ Med 61:201–204

    PubMed  CAS  Google Scholar 

  • Cohen B, Dai M, Raphan T (2003) The critical role of velocity storage in production of motion sickness. Ann N Y Acad Sci 1004:359–376

    Article  PubMed  Google Scholar 

  • Endo K, Thomson DB, Wilson VJ, Yamaguchi T, Yates BJ (1995a) Vertical vestibular input to and projections from the caudal parts of the vestibular nuclei of the decerebrate cat. J Neurophysiol 74:428–436

    PubMed  CAS  Google Scholar 

  • Endo T, Nemoto M, Minami M, Yoshioka M, Saito H, Parvez SH (1995b) Changes in the afferent abdominal vagal nerve activity induced by cisplatin and copper sulfate in the ferret. Biog Amines 11:399–407

    CAS  Google Scholar 

  • Fernandez C, Goldberg JM (1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. J Neurophysiol 34:661–675

    PubMed  CAS  Google Scholar 

  • Fernandez C, Goldberg JM (1976) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. III. Response dynamics. J Neurophysiol 39:996–1008

    PubMed  CAS  Google Scholar 

  • Fukuda H, Koga T (1991) The Botzinger complex as the pattern generator for retching and vomiting in the dog. Neurosci Res 12:471–485

    Article  PubMed  CAS  Google Scholar 

  • Fukuda H, Koga T (1992) Non-respiratory neurons in the Botzinger complex exhibiting appropriate firing patterns to generate the emetic act in dogs. Neurosci Res 14:180–194

    Article  PubMed  CAS  Google Scholar 

  • Fulwiler CE, Saper CB (1984) Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Res Rev 7:229–259

    Article  Google Scholar 

  • Gardner CJ, Armour DR, Beattie DT, Gale JD, Hawcock AB, Kilpatrick GJ, Twissell DJ, Ward P (1996) GR205171: a novel antagonist with high affinity for the tachykinin NK1 receptor, and potent broad-spectrum anti-emetic activity. Regul Pept 65:45–53

    Article  PubMed  CAS  Google Scholar 

  • Gonsalves S, Watson J, Ashton C (1996) Broad spectrum antiemetic effects of CP-122,721, a tachykinin NK1 receptor antagonist, in ferrets. Eur J Pharmacol 305:181–185

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Nishibayashi M, Kawabata K, Maeda S, Seki M, Ebukuro S (2003) Induction of Fos protein in neurons in the medulla oblongata after motion- and X-irradiation-induced emesis in musk shrews (Suncus murinus). Auton Neurosci 107:1–8

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Nishibayashi M, Maeda S, Seki M, Ebukuro S (2005) Emetic responses and neural activity in young musk shrews during the breast-feeding/weaning period: comparison between the high and low emetic response strains using a shaking stimulus. Exp Anim 54:301–307

    Article  PubMed  CAS  Google Scholar 

  • Jian BJ, Shintani T, Emanuel BA, Yates BJ (2002) Convergence of limb, visceral, and vertical semicircular canal or otolith inputs onto vestibular nucleus neurons. Exp Brain Res 144:247–257

    Article  PubMed  CAS  Google Scholar 

  • Jian BJ, Acernese AW, Lorenzo J, Card JP, Yates BJ (2005) Afferent pathways to the region of the vestibular nuclei that participates in cardiovascular and respiratory control. Brain Res 1044:241–250

    Article  PubMed  CAS  Google Scholar 

  • Koga T, Qu R, Fukuda H (1998) The central pattern generator for vomiting may exist in the reticular area dorsomedial to the retrofacial nucleus in dogs. Exp Brain Res 118:139–147

    Article  PubMed  CAS  Google Scholar 

  • Lang IM, Sarna SK, Shaker R (1999) Gastrointestinal motor and myoelectric correlates of motion sickness. Am J Physiol 277:G642–G652

    PubMed  CAS  Google Scholar 

  • Miller AD, Ruggiero DA (1994) Emetic reflex are revealed by expression of the immediate-early gene c-fos in the cat. J Neurosci 14:871–888

    PubMed  CAS  Google Scholar 

  • Miller AD, Wilson VJ (1983) Vestibular-induced vomiting after vestibulocerebellar lesions. Brain Behav Evol 23:26–31

    Article  PubMed  CAS  Google Scholar 

  • Money KE (1970) Motion sickness. Physiol Rev 50:1–39

    PubMed  CAS  Google Scholar 

  • Moy JD, Miller DJ, Catanzaro MF, Boyle BM, Ogburn SW, Cotter LA, Yates BJ, McCall AA (2012) Responses of neurons in the caudal medullary lateral tegmental field to visceral inputs and vestibular stimulation in vertical planes. Am J Physiol Regul Integr Comp Physiol 303:R929–R940

    Article  PubMed  CAS  Google Scholar 

  • Okahara K, Nisimaru N (1991) Climbing fiber responses evoked in lobule VII of the posterior cerebellum from a vagal nerve in rabbits. Neurosci Res 12:232–239

    Article  PubMed  CAS  Google Scholar 

  • Oman CM (1990) Motion sickness: a synthesis and evaluation of the sensory conflict theory. Can J Physiol Pharmacol 68:294–303

    Article  PubMed  CAS  Google Scholar 

  • Onishi T, Mori T, Yanagihara M, Furukawa N, Fukuda H (2007) Similarities of the neuronal circuit for the induction of fictive vomiting between ferrets and dogs. Auton Neurosci 136:20–30

    Article  PubMed  Google Scholar 

  • Porter JD, Balaban CD (1997) Connections between the vestibular nuclei and brain stem regions that mediate autonomic function in the rat. J Vestib Res 7:63–76

    Article  PubMed  CAS  Google Scholar 

  • Precht W, Volkind R, Maeda M, Giretti ML (1976) The effects of stimulating the cerebellar nodulus in the cat on the responses of vestibular neurons. Neuroscience 1:301–312

    Article  PubMed  CAS  Google Scholar 

  • Precht W, Volkind R, Blanks RH (1977) Functional organization of the vestibular input to the anterior and posterior cerebellar vermis of cat. Exp Brain Res 27:143–160

    Article  PubMed  CAS  Google Scholar 

  • Ruggiero D, Batton RR 3rd, Jayaraman A, Carpenter MB (1977) Brain stem afferents to the fastigial nucleus in the cat demonstrated by transport of horseradish peroxidase. J Comp Neurol 172:189–209

    Article  PubMed  CAS  Google Scholar 

  • Ruggiero DA, Mtui EP, Otake K, Anwar M (1996) Vestibular afferents to the dorsal vagal complex: substrate for vestibular-autonomic interactions in the rat. Brain Res 743:294–302

    Article  PubMed  CAS  Google Scholar 

  • Saab CY, Willis WD (2001) Nociceptive visceral stimulation modulates the activity of cerebellar Purkinje cells. Exp Brain Res 140:122–126

    Article  PubMed  CAS  Google Scholar 

  • Schor RH, Angelaki DE (1992) The algebra of neural response vectors. Ann N Y Acad Sci 656:190–204

    Article  PubMed  CAS  Google Scholar 

  • Schor RH, Miller AD, Tomko DL (1984) Responses to head tilt in cat central vestibular neurons. I. Direction of maximum sensitivity. J Neurophysiol 51:136–146

    PubMed  CAS  Google Scholar 

  • Shapiro RE, Miselis RR (1985) The central neural connections of the area postrema of the rat. J Comp Neurol 234:344–364

    Article  PubMed  CAS  Google Scholar 

  • Somana R, Walberg F (1979) Cerebellar afferents from the nucleus of the solitary tract. Neurosci Lett 11:41–47

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama Y, Suzuki T, Destefino VJ, Yates BJ (2011) Integrative responses of neurons in nucleus tractus solitarius to visceral afferent stimulation and vestibular stimulation in vertical planes. Am J Physiol Regul Integr Comp Physiol 301:R1380–R1390

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Sugiyama Y, Yates BJ (2012) Integrative responses of neurons in parabrachial nuclei to a nauseogenic gastrointestinal stimulus and vestibular stimulation in vertical planes. Am J Physiol Regul Integr Comp Physiol 302:R965–R975

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi Y, McLean JH, Hopkins DA (1982) Reciprocal connections between the amygdala and parabrachial nuclei: ultrastructural demonstration by degeneration and axonal transport of horseradish peroxidase in the cat. Brain Res 239:583–588

    Article  PubMed  CAS  Google Scholar 

  • Tong G, Robertson LT, Brons J (1993) Climbing fiber representation of the renal afferent nerve in the vermal cortex of the cat cerebellum. Brain Res 601:65–75

    Article  PubMed  CAS  Google Scholar 

  • Verbalis JG, Richardson DW, Stricker EM (1987) Vasopressin release in response to nausea-producing agents and cholecystokinin in monkeys. Am J Physiol 252:R749–R753

    PubMed  CAS  Google Scholar 

  • Walberg F, Dietrichs E (1988) The interconnection between the vestibular nuclei and the nodulus: a study of reciprocity. Brain Res 449:47–53

    Article  PubMed  CAS  Google Scholar 

  • Wang SC, Borison HL (1951a) Copper sulphate emesis; a study of afferent pathways from the gastrointestinal tract. Am J Physiol 164:520–526

    PubMed  CAS  Google Scholar 

  • Wang SC, Borison HL (1951b) The vomiting center; its destruction by radon implantation in dog medulla oblongata. Am J Physiol 166:712–717

    PubMed  CAS  Google Scholar 

  • Wang SC, Chinn HI (1956) Experimental motion sickness in dogs; importance of labyrinth and vestibular cerebellum. Am J Physiol 185:617–623

    PubMed  CAS  Google Scholar 

  • Wang SC, Renzi AA, Chinn HI (1958) Mechanism of emesis following x-irradiation. Am J Physiol 193:335–339

    PubMed  CAS  Google Scholar 

  • Yates BJ (2009) Motion sickness. In: Binder MD, Hirokawa N, Windhorst U (eds) Encyclopedia of neuroscience. Springer, Heidelberg, pp 2410–2413

    Chapter  Google Scholar 

  • Yates BJ, Grelot L, Kerman IA, Balaban CD, Jakus J, Miller AD (1994) Organization of vestibular inputs to nucleus tractus solitarius and adjacent structures in cat brain stem. Am J Physiol 267:R974–R983

    PubMed  CAS  Google Scholar 

  • Yates BJ, Balaban CD, Miller AD, Endo K, Yamaguchi Y (1995) Vestibular inputs to the lateral tegmental field of the cat: potential role in autonomic control. Brain Res 689:197–206

    Article  PubMed  CAS  Google Scholar 

  • Zheng ZH, Dietrichs E, Walberg F (1982) Cerebellar afferent fibres from the dorsal motor vagal nucleus in the cat. Neurosci Lett 32:113–118

    Article  PubMed  CAS  Google Scholar 

  • Zimnicka AM, Ivy K, Kaplan JH (2011) Acquisition of dietary copper: a role for anion transporters in intestinal apical copper uptake. Am J Physiol Cell Physiol 300:C588–C599

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Danielle Akinsanmi, George Bourdages, Alex Carter, Valerie Casuccio, Thomas Cooper, and Lucy Cotter for technical assistance. Funding was provided by Grant R01-DC003732 from the National Institutes of Health (USA). Milad Arshian was supported by NIH training grant T32-DC011499.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bill J. Yates.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arshian, M.S., Puterbaugh, S.R., Miller, D.J. et al. Effects of visceral inputs on the processing of labyrinthine signals by the inferior and caudal medial vestibular nuclei: ramifications for the production of motion sickness. Exp Brain Res 228, 353–363 (2013). https://doi.org/10.1007/s00221-013-3568-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-013-3568-3

Keywords

Navigation