Skip to main content
Log in

An fMRI study of optokinetic nystagmus and smooth-pursuit eye movements in humans

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Both optokinetic nystagmus (OKN) and smooth-pursuit eye movements (SPEM) are subclasses of so-called slow eye movements. However, optokinetic responses are reflexive whereas smooth pursuit requires the voluntary tracking of a moving target. We used functional magnetic resonance imaging (fMRI) to determine the neural basis of OKN and SPEM, and to uncover whether the two underlying neural systems overlap or are independent at the cortical level. The results showed a largely overlapping neural circuitry. A direct comparison between activity during the execution of OKN and SPEM yielded no oculomotor-related area exclusively dedicated to one or the other eye movement type. Furthermore, the performance of SPEM evoked a bilateral deactivation of the human equivalent of the parietoinsular vestibular cortex. This finding might indicate that the reciprocally inhibitory visual–vestibular interaction involves not only OKN but also SPEM, which are both linked with the encoding of object-motion and self-motion. Moreover, we could show differential activation patterns elicited by look-nystagmus and stare-nystagmus. Look-nystagmus is characterized by large amplitudes and low-frequency resetting eye movements rather resembling SPEM. Look-nystagmus evoked activity in cortical oculomotor centers. By contrast, stare-nystagmus is usually characterized as being more reflexive in nature and as showing smaller amplitudes and higher frequency resetting eye movements. Stare-nystagmus failed to elicit significant signal changes in the same regions as look-nystagmus/SPEM. Thus, less reflexive eye movements correlated with more pronounced signal intensity. Finally, on the basis of a general investigation of slow eye movements, we were interested in a cortical differentiation between subtypes of SPEM. We compared activity associated with predictable and unpredictable SPEM as indicated by appropriate visual cues. In general, predictable and unpredictable SPEM share the same neural network, yet information about the direction of an upcoming target movement reduced the cerebral activity level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BA:

Brodmann area

fMRI:

Functional magnetic resonance imaging

FEF:

Frontal eye field

GLM:

General linear model

MP-RAGE:

Magnetization-prepared rapid acquisition gradient echo

OKN:

Optokinetic nystagmus

pIP:

Posterior intraparietal area

PIVC:

Parietoinsular vestibular cortex

pSPL:

Posterior portion of the superior parietal lobule

SEF:

Supplementary eye field

SPEM:

Smooth-pursuit eye movement

VIP:

Ventral intraparietal area

References

  • Albright TD, Desimone R, Gross CG (1984) Columnar organization of directionally selective cells in visual area MT of the macaque. J Neurophysiol 51(1):16–31

    CAS  PubMed  Google Scholar 

  • Anderson TJ, Jenkins IH, Brooks DJ, Hawken MB, Frackowiak RS, Kennard C (1994) Cortical control of saccades and fixation in man. A PET study Brain 117:1073–1084

    Google Scholar 

  • Baloh RW, Yee RD, Honrubia V (1980) Optokinetic nystagmus and parietal lobe lesions. Ann Neurol 7(3):269–276

    Article  CAS  PubMed  Google Scholar 

  • Barnes GR, Donelan SF (1999) The remembered pursuit task: evidence for segregation of timing and velocity storage in predictive oculomotor control. Exp Brain Res 129:57–67

    Article  CAS  PubMed  Google Scholar 

  • Barton JJS, Simpson T, Kiriakopoulos E, Stewart C, Crawley A, Guthrie, Wood M, Mikulis D (1996) Functional MRI of lateral occipitotemporal cortex during pursuit and motion perception. Ann Neurol 40(3):387–398

    Article  CAS  PubMed  Google Scholar 

  • Bense S, Stephan T, Yousry TA, Brandt T, Dieterich M (2001) Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI). J Neurophysiol 85(2):886–899

    CAS  PubMed  Google Scholar 

  • Berman RA, Colby CL, Genovese CR, Voyvodic JT, Luna B, Thulborn KR, Sweeney JA (1999) Cortical networks subserving pursuit and saccadic eye movements in humans: an fMRI study. Hum Brain Mapp 8(4):209–225

    Article  CAS  PubMed  Google Scholar 

  • Blanke O, Ortigue S, Landis T, Seeck M (2002) Stimulating illusory own-body perceptions. Nature 419(6904):269–270

    Article  CAS  PubMed  Google Scholar 

  • Brandt T, Dieterich M (1999) The vestibular cortex, Its locations, functions, and disorders. Ann NY Acad Sci 871:293–312

    CAS  PubMed  Google Scholar 

  • Brandt T, Bartenstein P, Janek A, Dieterich M (1998) Reciprocal inhibitory visual–vestibular interaction, Visual motion stimulation deactivates the parieto-insular vestibular cortex. Brain 121:1749–1758

    Article  PubMed  Google Scholar 

  • Bremmer F, Ilg UJ, Thiele A, Distler C, Hoffmann KP (1997) Eye position effects in monkey cortex. I. Visual and pursuit-related activity in extrastriate areas MT and MST. J Neurophysiol 77(2):944–961

    CAS  PubMed  Google Scholar 

  • Bremmer F, Kubischik M, Pekel M, Lappe M, Hoffmann KP (1999) Linear vestibular self-motion signals in monkey medial superior temporal area. Ann NY Acad Sci 8721:272–281

    Google Scholar 

  • Bremmer F, Duhamel JR, Ben Hamed S, Graf W (2000) Stages of self-motion processing in primate posterior parietal cortex. Int Rev Neurobiol 44:173–198

    CAS  PubMed  Google Scholar 

  • Bremmer F, Schlack A, Shah NJ, Zafiris O, Kubischik M, Hoffmann K, Zilles K, Fink GR (2001) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29(1):287–296

    Article  CAS  PubMed  Google Scholar 

  • Bremmer F, Duhamel JR, Ben Hamed S, Graf W (2002a) Heading encoding in the macaque ventral intraparietal area (VIP). Eur J Neurosci 16(8):1554–1568

    Article  Google Scholar 

  • Bremmer F, Klam F, Duhamel JR, Ben Hamed S, Graf W (2002b) Visual–vestibular interactive responses in the macaque ventral intraparietal area (VIP). Eur J Neurosci 16(8):1569–1586

    Article  Google Scholar 

  • Brodmann (1909) Vergleichende Lokalisationslehre der Großhirnrinde in ihren Prinzipien dargestellt aufgrund des Zellenaufbaues. Barth, Leipzig

    Google Scholar 

  • Büchel C, Josephs O, Rees G, Turner R, Frith CD, Friston KJ (1998) The functional anatomy of attention to visual motion, A functional MRI study. Brain 121:1281–1294

    Article  PubMed  Google Scholar 

  • Bucher SF, Dieterich M, Seelos KC, Brandt T (1997) Sensorimotor cerebral activation during optokinetic nystagmus, A functional MRI study. Neurology 49(5):1370–1377

    CAS  PubMed  Google Scholar 

  • Bucher SF, Dieterich M, Wiesmann M, Weiss A, Zink R, Yousry TA, Brandt T (1998) Cerebral functional magnetic resonance imaging of vestibular, auditory, and nociceptive areas during galvanic stimulation. Ann Neurol 44(1):120–125

    Article  CAS  PubMed  Google Scholar 

  • Carpenter RHS (1988) Movements of the eyes. Pion, London

    Google Scholar 

  • Colby CL, Duhamel JR, Goldberg ME (1993) Ventral intraparietal area of the macaque: anatomic location and visual response properties. J Neurophysiol 69(3):902–914

    CAS  PubMed  Google Scholar 

  • Corbetta M (1998) Frontoparietal cortical networks for directing attention and the eye to visual locations: identical, independent, or overlapping neural systems? Proc Natl Acad Sci USA 95(3):831–838

    Article  CAS  PubMed  Google Scholar 

  • Corbetta M, Miezin FM, Dobmeyer S, Shulman GL, Petersen SE (1991) Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. J Neurosci 11(8):2383–2402

    CAS  PubMed  Google Scholar 

  • Culham JC, Brandt SA, Cavanagh P, Kanwisher NG, Dale AM, Tootell RB (1998) Cortical fMRI activation produced by attentive tracking of moving targets. J Neurophysiol 80(5):2657–2670

    CAS  PubMed  Google Scholar 

  • Darby DG, Nobre AC, Thangaraj V, Edelman R, Mesulam MM, Warach S (1996) Cortical activation in the human brain during lateral saccades using EPISTAR functional magnetic resonance imaging. Neuroimage 3(1):53–62

    Article  CAS  PubMed  Google Scholar 

  • Deutschländer A, Bense S, Stephan T, Schwaiger M, Brandt T, Dieterich M (2002) Sensory system interactions during simultaneous vestibular and visual stimulation in PET. Hum Brain Mapp 16(2):92–103

    Article  PubMed  Google Scholar 

  • Dieterich M, Brandt T (2000) Brain activation studies on visual–vestibular and ocular motor interaction. Curr Opin Neurol 13(1):13–18

    Article  CAS  PubMed  Google Scholar 

  • Dieterich M, Bucher SF, Seelos KC, Brandt T (1998) Horizontal or vertical optokinetic stimulation activates visual motion-sensitive, ocular motor and vestibular cortex areas with right hemispheric dominance, An fMRI study. Brain 121:1479–1495

    Article  PubMed  Google Scholar 

  • Dieterich M, Bucher SF, Seelos KC, Brandt T (2000) Cerebellar activation during optokinetic stimulation and saccades. Neurology 54(1):148–155

    CAS  PubMed  Google Scholar 

  • Dieterich M, Bense S, Stephan T, Yousry TA, Brandt T (2003) FMRI signal increases and decreases in cortical areas during small-field optokinetic stimulation and central fixation. Exp Brain Res 148(1):117–127

    Article  PubMed  Google Scholar 

  • Dodge R (1903) Five types of eye movements in the horizontal meridian plane of the field of regard. Am J Physiol Lond 8:307–329

    Google Scholar 

  • Duffy CJ, Wurtz RH (1991) Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. J Neurophysiol 65(6):1329–1345

    CAS  PubMed  Google Scholar 

  • Dukelow SP, DeSouza JF, Culham JC, van den Berg AV, Menon RS, Vilis T (2001) Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements. J Neurophysiol 86(4):1991–2000

    CAS  PubMed  Google Scholar 

  • Duvernoy HM (1999) The human brain, Surface, blood supply, and three-dimensional sectional anatomy. Springer, Wien New York

    Google Scholar 

  • Eidelberg D, Galaburda AM (1984) Inferior parietal lobule, Divergent architectonic asymmetries in the human brain. Arch Neurol 41(8):843–852

    CAS  PubMed  Google Scholar 

  • Froehler MT, Duffy CJ (2002) Cortical neurons encoding path and place: where you go is where you are. Science 295(5564):2462–2465

    Article  CAS  PubMed  Google Scholar 

  • Gabel SF, Misslisch H, Gielen CC, Duysens J (2002) Responses of neurons in area VIP to self-induced and external visual motion. Exp Brain Res 147(4):520–528

    Article  CAS  PubMed  Google Scholar 

  • Galati G, Pappata S, Pantano P, Lenzi GL, Samson Y, Pizzamiglio L (1999) Cortical control of optokinetic nystagmus in humans: a positron emission tomography study. Exp Brain Res 126(2):149–159

    Article  CAS  PubMed  Google Scholar 

  • Giaschi D, Jan JE, Bjornson B, Young SA, Tata M, Lycons CJ, Good WV, Wong PK (2003) Conscious visual abilities in a patient with early bilateral occipital damage. Dev Med Child Neurol 45(11):772–781

    Article  PubMed  Google Scholar 

  • Goltz HC, DeSouza JFX, Menon RS, Tweed DB, Villis T (2003) Interaction of retinal image and eye velocity in motion perception. Neuron 39:569–576

    CAS  PubMed  Google Scholar 

  • Grüsser OJ, Pause M, Schreiter U (1990) Localization and responses of neurons in the parieto-insular vestibular cortex of awake monkeys (Macaca fascicularis). J Physiol 430:537–557

    PubMed  Google Scholar 

  • Guldin WO, Grüsser OJ (1998) Is there a vestibular cortex? Trends Neurosci 21(6):254–259

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa Y, Nakajims T, Takagi M, Fukuhara N, Abe H (2002) Human cerebellar activation in relation to saccadic eye movements: a functional magnetic resonance imaging study. Ophthalmologica 216:399–405

    Article  PubMed  Google Scholar 

  • Heide W, Kurzidim K, Kömpf D (1996) Deficits of smooth-pursuit eye movements after frontal and parietal lesions. Brain 119:1951–1969

    PubMed  Google Scholar 

  • Heide W, Binkofski F, Seitz RJ, Posse S, Nitschke MF, Freund HJ, Kömpf D (2001) Activation of frontoparietal cortices during memorized triple-step sequences of saccadic eye movements: an fMRI study. Eur J Neurosci 13(6):1177–1189

    Article  CAS  PubMed  Google Scholar 

  • Huk AC, Dougherty RF, Heeger DJ (2002) Retinotopy and functional subdivision of human areas MT and MST. J Neurosci 22(16):7195–7205

    CAS  PubMed  Google Scholar 

  • Ilg UJ (1997) Slow eye movements. Prog Neurobiol 53(3):293–329

    Article  CAS  PubMed  Google Scholar 

  • Ilg UJ, Hoffmann KP (1996) Responses of neurons of the nucleus of the optic tract and the dorsal terminal nucleus of the accessory optic tract in the awake monkey. Eur J Neurosci 8(1):92–105

    CAS  PubMed  Google Scholar 

  • Ilg UJ, Thier P (2003) Visual tracking neurons in primate area MST are activated by smooth-pursuit eye movements of an “imaginary” target. J Neurophysiol 90(3):1489–1502

    PubMed  Google Scholar 

  • Ilg UJ, Bremmer F, Hoffmann KP (1993) Optokinetic and pursuit system: a case report. Behav Brain Res 57(1):21–29

    Article  CAS  PubMed  Google Scholar 

  • Ino T, Inoue Y, Kage M, Hirose S, Kimura T, Fukuyama H (2002) Mental navigation in humans is processed in the anterior bank of the parieto-occipital sulcus. Neurosci Lett 322(3):182–186

    Article  CAS  PubMed  Google Scholar 

  • Kao GW, Morrow MJ (1994) The relationship of anticipatory smooth eye movement to smooth pursuit initiation. Vision Res 34(22):3027–3036

    Article  CAS  PubMed  Google Scholar 

  • Kimmig H, Greenlee MW, Huethe F, Mergner T (1999) MR-eyetracker: a new method for eye movement recording in functional magnetic resonance imaging. Exp Brain Res 126(3):443–449

    Article  CAS  PubMed  Google Scholar 

  • Kimmig H, Greenlee MW, Gondan M, Schira M, Kassubek J, Mergner T (2001) Relationship between saccadic eye movements and cortical activity as measured by fMRI: quantitative and qualitative aspects. Exp Brain Res 141(2):184–194

    Article  CAS  PubMed  Google Scholar 

  • Kleinschmidt A, Thilo KV, Büchel C, Gresty MA, Bronstein AM, Frackowiak RS (2002) Neural correlates of visual-motion perception as object- or self-motion. Neuroimage 16(4):873–882

    Article  PubMed  Google Scholar 

  • Kolmel HW, Nabel HJ (1989) Optokinetic nystagmus in homonymous hemianopia due to a strictly occipital lesion. Eur Arch Psychiatry Neurol Sci 238(4):199–202

    Article  CAS  PubMed  Google Scholar 

  • Konen CS, Kleiser R, Seitz RJ, Bremmer F (2004) The encoding of saccadic eye movements within the human posterior parietal cortex. Neuroimage 22(1):304–314

    Article  PubMed  Google Scholar 

  • Krauzlis RJ (2004) Recasting the smooth-pursuit eye movement system. J Neurophysiol 91(2):591–603

    Article  PubMed  Google Scholar 

  • Kutz DF, Fattori P, Gamberini M, Breveglieri R, Galletti C (2003) Early- and late-responding cells to saccadic eye movements in the cortical area V6A of macaque monkey. Exp Brain Res 149(1):83–95

    CAS  PubMed  Google Scholar 

  • Leigh RJ, Zee DS (1999) The neurology of eye movements. Oxford University Press, London

    Google Scholar 

  • Leopold DA, Plettenberg HK, Logothetis NK (2002) Visual processing in the ketamine-anesthetized monkey. Optokinetic and blood oxygenation level-dependent responses. Exp Brain Res 143(3):359–372

    CAS  Google Scholar 

  • Lisberger SG, Morris EJ, Tychsen L (1987) Visual motion processing and sensory-motor integration for smooth-pursuit eye movements. Annu Rev Neurosci 10:97–129

    Article  CAS  PubMed  Google Scholar 

  • Luna B, Thulborn KR, Strojwas MH, McCurtain BJ, Berman RA, Genovese CR, Sweeney JA (1998) Dorsal cortical regions subserving visually guided saccades in humans: an fMRI study. Cereb Cortex 8(1):40–47

    Article  CAS  PubMed  Google Scholar 

  • McKeefry DJ, Zeki S (1997) The position and topography of the human colour centre as revealed by functional magnetic resonance imaging. Brain 120:2229–2242

    Article  PubMed  Google Scholar 

  • Miall RC, Imamizu H, Miyauchi S (2000) Activation of the cerebellum in coordinated eye and hand tracking movements: an fMRI study. Exp Brain Res 135(1):22–33

    Article  CAS  PubMed  Google Scholar 

  • Moschner C, Crawford TJ, Heide W, Trillenberg P, Kömpf D, Kennard C (1999) Deficits of smooth pursuit initiation in patients with degenerative cerebellar lesions. Brain 122:2147–2158

    Article  PubMed  Google Scholar 

  • Newsome WT, Wurtz RH, Komatsu H (1988) Relation of cortical areas MT and MST to pursuit eye movements. II. Differentiation of retinal from extraretinal inputs. J Neurophysiol 60(2):604–620

    CAS  PubMed  Google Scholar 

  • Nitschke MF, Binkofski F, Buccino G, Posse S, Erdmann C, Kömpf D, Seitz RJ, Heide W (2004) Activation of cerebellar hemispheres in spatial memorization of saccadic eye movements: an fMRI study. Hum Brain Mapp 22(2):155–164

    Article  PubMed  Google Scholar 

  • Noda H (1991) Cerebellar control of saccadic eye movements: its neural mechanisms and pathways. Jpn J Physiol 41:351–368

    Article  CAS  PubMed  Google Scholar 

  • O’Driscoll GA, Wolff AL, Benkelfat C, Florencio PS, Lal S, Evans AC (2000) Functional neuroanatomy of smooth pursuit and predictive saccades. Neuroreport 11(6):1335–1340

    CAS  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113

    Article  CAS  PubMed  Google Scholar 

  • Paus T (1996) Location and function of the human frontal eye-field: a selective review. Neuropsychologia 34(6):475–483

    Article  CAS  PubMed  Google Scholar 

  • Petit L, Haxby JV (1999) Functional anatomy of pursuit eye movements in humans as revealed by fMRI. J Neurophysiol 82(1):463–471

    CAS  PubMed  Google Scholar 

  • Petit L, Orssaud C, Tzourio N, Salamon G, Mazoyer B, Berthoz A (1993) PET study of voluntary saccadic eye movements in humans: basal ganglia-thalamocortical system and cingulate cortex involvement. J Neurophysiol 69(4):1009–1017

    CAS  PubMed  Google Scholar 

  • Petit L, Orssaud C, Tzourio N, Crivello F, Berthoz A, Mazoyer B (1996) Functional anatomy of a prelearned sequence of horizontal saccades in humans. J Neurosci 16(11):3714–3726

    CAS  PubMed  Google Scholar 

  • Petit L, Clark VP, Ingeholm J, Haxby JV (1997) Dissociation of saccade-related and pursuit-related activation in human frontal eye fields as revealed by fMRI. J Neurophysiol 77(6):3386–3390

    CAS  PubMed  Google Scholar 

  • Pola J, Wyatt HJ (1985) Active and passive smooth eye movements: effects of stimulus size and location. Vision Res 25(8):1063–1076

    Article  CAS  PubMed  Google Scholar 

  • Ron S, Robinson DA (1973) Eye movements evoked by cerebellar stimulation in the alert monkey. J Neurophysiol 36:1004–1022

    CAS  PubMed  Google Scholar 

  • Rosano C, Krisky CM, Welling JS, Eddy WF, Luna B, Thulborn KR, Sweeney JA (2002) Pursuit and saccadic eye movement subregions in human frontal eye field: a high-resolution fMRI investigation. Cereb Cortex 12(2):107–115

    Article  PubMed  Google Scholar 

  • Schaafsma SJ, Duysens J (1996) Neurons in the ventral intraparietal area of awake macaque monkey closely resemble neurons in the dorsal part of the medial superior temporal area in their responses to optic flow patterns. J Neurophysiol 76(6):4056–4068

    CAS  PubMed  Google Scholar 

  • Schlack A, Hoffmann KP, Bremmer F (2002) Interaction of linear vestibular and visual stimulation in the macaque ventral intraparietal area (VIP). Eur J Neurosci 16(10):1877–1886

    Article  PubMed  Google Scholar 

  • Schlack A, Hoffmann KP, Bremmer F (2003) Selectivity of macaque area VIP for smooth-pursuit eye movements. J Physiol 551:551–561

    Article  CAS  PubMed  Google Scholar 

  • Schmahmann JD, Doyon J, Toga AW, Petrides M, Evans AC (2000) MRI atlas of the human cerebellum. Academic Press, New York

    Google Scholar 

  • Schmid A, Rees G, Frith C, Barnes G (2001) An fMRI study of anticipation and learning of smooth-pursuit eye movements in humans. Neuroreport 12(7):1409–1414

    Article  CAS  PubMed  Google Scholar 

  • Seitz RJ, Binkofski F (2003) Modular organization of parietal lobe functions as revealed by functional activation studies. Adv Neurol 93:281–292

    PubMed  Google Scholar 

  • Shmuel A, Yacoub E, Pfeuffer J, Vand de Moortele PF, Adriany G, Hu X, Ugurbil K (2002) Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron 36(6):1195–1210

    Article  CAS  PubMed  Google Scholar 

  • Stephan T, Mascolo A, Yousry TA, Bense S, Brandt T, Dieterich M (2002) Changes in cerebellar activation pattern during two successive sequences of saccades. Hum Brain Mapp 16:63–70

    Article  PubMed  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, Stuttgart

    Google Scholar 

  • Tanabe J, Tregellas J, Miller D, Ross RG, Freedman R (2002) Brain activation during smooth-pursuit eye movements. Neuroimage 17(3):1315–1324

    Article  PubMed  Google Scholar 

  • Tanaka K, Sugita Y, Moriya M, Saito H (1993) Analysis of object motion in the ventral part of the medial superior temporal area of the macaque visual cortex. J Neurophysiol 69(1):128–142

    CAS  PubMed  Google Scholar 

  • Ter Braak JWG (1936) Untersuchungen über optokinetischen Nystagmus. Arch Neerl Physiol 21:309–376

    Google Scholar 

  • Tian JR, Lynch JC (1996) Functionally defined smooth and saccadic eye movement subregions in the frontal eye field of Cebus monkeys. J Neurophysiol 76(4):2740–2753

    CAS  PubMed  Google Scholar 

  • Von Noorden GK, Mackensen G (1962) Pursuit movements of normal and amblyopic eyes. Am J Ophthalmol 53:325–336

    CAS  PubMed  Google Scholar 

  • Wenzel R, Bartenstein P, Dieterich M, Danek A, Weindl A, Minoshima S, Ziegler S, Schwaiger M, Brandt T (1996) Deactivation of human visual cortex during involuntary ocular oscillations, A PET activation study. Brain 119:101–110

    PubMed  Google Scholar 

  • Wojciulik E, Kanwisher N, Driver J (1998) Covert visual attention modulates face-specific activity in the human fusiform gyrus: fMRI study. J Neurophysiol 79(3):1574–1578

    CAS  PubMed  Google Scholar 

  • Wyatt HJ, Pola J (1988) Predictive behavior of optokinetic eye movements. Exp Brain Res 73(3):615–626

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by HFSP (RG0149/1999-B), EU-Eurokinesis (QLRT-2001-00151), and SFB 194 (A 13). The authors thank Erika Raedisch for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina S. Konen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konen, C.S., Kleiser, R., Seitz, R.J. et al. An fMRI study of optokinetic nystagmus and smooth-pursuit eye movements in humans. Exp Brain Res 165, 203–216 (2005). https://doi.org/10.1007/s00221-005-2289-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-2289-7

Keywords

Navigation