Skip to main content
Log in

The remembered pursuit task: evidence for segregation of timing and velocity storage in predictive oculomotor control

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract 

Regular, repeated presentation of identical constant-velocity target motion stimuli (ramps) appears to allow build up of an internal store, release of which can be used to generate anticipatory smooth pursuit prior to subsequent target onset. Here, we examine whether release of the anticipatory response can be controlled by timing cues unrelated to the motion stimulus itself. In experiment 1, the target moved in alternate directions and was exposed for 480 ms as it passed through centre; otherwise subjects were in darkness. Inter-stimulus interval (ISI) was either regular (3.6 s) or randomized (2.7–4.3 s). Presentations were given with or without audio cues that occurred at a constant cue time (CT) prior to target appearance. Even when ISI was randomized, cues could be used to generate anticipatory smooth pursuit. Eye velocity (V100) measured 100 ms after target onset (just prior to visual feedback influence) was greater with cues than without and decreased significantly as CT increased from 240–960 ms. In experiment 2, we assessed the effects of fixation between presentations and eccentricity of target starting position, using unidirectional ramps. The target was visible for 400 ms and started on, ended on or straddled the midline. Subjects held fixation on the midline until an audio cue signalled that preparation for ensuing target appearance could begin. There was no difference in V100 between starting positions or between presence/absence of fixation. In experiment 3, we compared the effects of using audio, visual or tactile cues. All types of cue evoked anticipatory smooth pursuit, but the response to the visual cue was significantly delayed compared with the others. However, V100 was not significantly different between cues. In all experiments, V100 was scaled in proportion to target velocity over the range 12.5–50°/s, showing that this was a truly predictive response. The results provide evidence that timing and velocity storage can be independently controlled through different sensory channels and suggest that the two functions are probably carried out by separate neural mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 3 December 1998 / Accepted: 11 May 1999

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnes, G., Donelan, S. The remembered pursuit task: evidence for segregation of timing and velocity storage in predictive oculomotor control. Exp Brain Res 129, 57–67 (1999). https://doi.org/10.1007/s002210050936

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002210050936

Navigation