Skip to main content
Log in

On the Growth of a Particle Coalescing in a Poisson Distribution of Obstacles

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we consider the coalescence dynamics of a tagged particle moving in a random distribution of particles with volumes independently distributed according to a probability distribution (CTP model). We provide a rigorous derivation of a kinetic equation for the probability density for the size and position of the tagged particle in the kinetic limit where the volume fraction \({\phi}\) filled by the background of particles tends to zero. Moreover, we prove that the particle system, i.e., the CTP model, is well posed for a small but positive volume fraction with probability one as long as the distribution of the particle sizes is compactly supported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz M., Stegun I.A.: Handbook of Mathematical functions. Dover editions, New York (1972)

    MATH  Google Scholar 

  2. Basile G., Nota A., Pulvirenti M.: A diffusion limit for a test particle in a random distribution of scatterers. J. Stat. Phys. 155(6), 1087–1111 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Basile G., Nota A., Pezzotti F., Pulvirenti M.: Derivation of the Fick’s law for the Lorentz model in a low density regime. Commun. Math. Phys. 336(3), 1607–1636 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Billingsley P.: Probability and Measure. Third Edition. Wiley Series in Probability and Statistics 245. Wiley, New York (1995)

    Google Scholar 

  5. Boldrighini C., Bunimovich L.A., Sinai Y.G.: On the Boltzmann equation for the Lorentz gas. J. Stat. Phys. 32, 477–501 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Deaconu M., Fournier N.: Probabilistic approach of some discrete and continuous coagulation equations with diffusion. Stoch. Proc. Appl. 101, 83–111 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Desvillettes L., Pulvirenti M.: The linear Boltzmann equation for long-range forces: a derivation from particle systems. Math. Models Methods Appl. Sci. 9, 1123–1145 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Desvillettes L., Ricci V.: A rigorous derivation of a linear kinetic equation of Fokker–Planck type in the limit of grazing collisions. J. Stat. Phys. 104, 1173–1189 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Escobedo M., Pezzotti F.: Propagation of chaos in a coagulation model. Math. Models Methods Appl. Sci. 23, 1143–1176 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fournier N., Giet J.S.: Convergence of the Marcus-Lushnikov process. Methodol. Comput. Appl. Probab. 6, 219–231 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Friedlander, S.: Smoke, Dust and Haze: Fundamentals of Aerosol Dynamics. Topics in Chemical Engineering, 2nd edn. Oxford University Press, Oxford (2000)

  12. Gallavotti, G.: Grad-Boltzmann limit and Lorentz’s Gas. In: Statistical Mechanics. A Short Treatise. Appendix 1.A2. Springer, Berlin (1999)

  13. Gallagher, I., Saint-Raymond, L., Texier, B.: From Newton to Boltzmann : the case of hard-spheres and short-range potentials. Zürich Lect. Adv. Math. 18 (2014)

  14. Grimmett, G.: Percolation. Grundlehren der Math. Wissenschaften, 2nd edn, p. 321. Springer, Berlin (1999)

  15. Hall P.: On continuum percolation. Ann. Probab. 13(4), 1250–1266 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hammond A., Rezakhanlou F.: Kinetic limit for a system of coagulating planar Brownian particles. J. Stat. Phys. 124, 997–1040 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Hammond A., Rezakhanlou F.: The kinetic limit of a system of coagulating Brownian particles. Arch. Rat. Mech. Anal. 185(1), 1–67 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lanford, O.E.: Time evolution of large classical systems. In: Moser, J. (ed.) Dynamical Systems, Theory and Applications. Lecture Notes in Physics, vol. 38, pp. 1–111. Springer, Berlin (1975)

  19. Lang R., Nguyen X.-X.: Smoluchowski’s theory of coagulation in colloids holds rigorously in the Boltzmann-Grad-limit. Z. Wahrsch. Verw. Gebiete 54(3), 227–280 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liggett T.M.: Interacting Particle Systems. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  21. Lorentz H.A.: The motion of electrons in metallic bodies. Proc. Acad. Amst. 7, 438–453 (1905)

    Google Scholar 

  22. Lushnikov A.: Coagulation in finite systems. J. Colloid Interface Sci. 65, 276–285 (1978)

    Article  Google Scholar 

  23. Lushnikov A.: Some new aspects of coagulation theory. Izv. Akad. Nauk SSSR Ser. Fiz. Atmosfer. i Okeana 14, 738–743 (1978)

    Google Scholar 

  24. Marcozzi M., Nota A.: Derivation of the linear Landau equation and linear Boltzmann equation from the Lorentz model with magnetic field. J. Stat. Phys. 162, 1539–1565 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Marcus A.H.: Stochastic coalescence. Technometrics 10, 133–143 (1968)

    Article  MathSciNet  Google Scholar 

  26. Meester R., Roy R.: Continuum Percolation. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  27. Norris J.: Brownian coagulation. Commun. Math. Sci. 2(1), 93–101 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nota, A.: Diffusive limit for the random Lorentz gas. In: From Particle Systems to Partial Differential Equations II Springer Proceedings in Mathematics and Statistics, vol. 129, pp. 273–292 (2015)

  29. Pulvirenti M., Saffirio C., Simonella S.: On the validity of the Boltzmann equation for short range potentials. Rev. Math. Phys. 26(02), 1450001 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Smoluchowski M.: Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen. Physik. Zeitschrift 17, 557–599 (1916)

    ADS  Google Scholar 

  31. Spohn H.: The Lorentz flight process converges to a random flight process. Commun. Math. Phys. 60, 277–290 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Trizac E., Hansen J.P.: Dynamic scaling behavior of ballistic coalescence. Phys. Rev. Lett. 74(21), 4114–4117 (1995)

    Article  ADS  Google Scholar 

  33. Trizac E., Hansen J.P.: Dynamics and growth of particles undergoing ballistic coalescence. J. Stat. Phys. 82(5), 1345–1370 (1996)

    Article  ADS  Google Scholar 

  34. Yaghouti M.R., Rezakhanlou F., Hammond A.: Coagulation, diffusion and the continuous Smoluchowski equation. Stoch. Proc. Appl. 119(9), 3042–3080 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessia Nota.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nota, A., Velázquez, J.J.L. On the Growth of a Particle Coalescing in a Poisson Distribution of Obstacles. Commun. Math. Phys. 354, 957–1013 (2017). https://doi.org/10.1007/s00220-017-2929-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2929-3

Navigation