Skip to main content
Log in

Harmonic Bundles and Toda Lattices With Opposite Sign II

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the integrable variation of twistor structure associated to any solution of the Toda lattice with opposite sign. In particular, we give a criterion when it has an integral structure. It follows from two results. One is the explicit computation of the Stokes factors of a certain type of meromorphic flat bundles. The other is an explicit description of the meromorphic flat bundle associated to the solution of the Toda equation. We use the opposite filtration of the limit mixed twistor structure with an induced torus action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barannikov S.: Quantum periods. I. Semi-infinite variations of Hodge structures. Int. Math. Res. Not. 23, 1243–1264 (2001)

    Article  MathSciNet  Google Scholar 

  2. Biquard O.: Fibrés de Higgs et connexions intégrables: le cas logarithmique (diviseur lisse). Ann. Sci. École Norm. Sup. 30, 41–96 (1997)

    MATH  MathSciNet  Google Scholar 

  3. Biquard O., Boalch P.: Wild non-abelian Hodge theory on curves. Compos. Math. 140, 179–204 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cecotti S., Vafa C.: Topological–anti-topological fusion. Nucl. Phys. B. 367, 359–461 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Cecotti S., Vafa C.: On classification of N=2 supersymmetric theories. Commun. Math. Phys. 158, 569–644 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Douai, A.: Quantum differential systems and some applications to mirror symmetry. arXiv:1203.5920

  7. Douai A., Sabbah C.: Gauss–Manin systems, Brieskorn lattices and Frobenius structures (I). Ann. Inst. Fourier (Grenoble) 53, 1055–1116 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dubrovin B.: Geometry and integrability of topological–antitopological fusion. Commun. Math. Phys. 152, 539–564 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Fujisaki G.: Fields and Galois theory. Iwanami (in Japanese), Tokyo (1983)

    Google Scholar 

  10. Guest, M.A., Lin, C.-S.: Nonlinear PDE aspects of the tt * equations of Cecotti and Vafa. J. Reine Angew. Math. arXiv:1010.1889 (to appear)

  11. Guest M.A., Lin C.-S.: Some tt * structures and their integral Stokes data. Commun. Number Theory Phys. 6, 785–803 (2012) (arXiv:1209.2318)

    Article  MATH  MathSciNet  Google Scholar 

  12. Guest, M.A., Its, A.R., Lin, C.-S.: Isomonodromy aspects of the tt* equations of Cecotti and Vafa I. Stokes Data. arXiv:1209.2045

  13. Guzzetti D.: Stokes matrices and monodromy of the quantum cohomology of projective spaces. Commun. Math. Phys. 207, 341–383 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Hertling C.: tt * geometry, Frobenius manifolds, their connections, and the construction for singularities. J. Reine Angew. Math. 555, 77–161 (2003)

    MATH  MathSciNet  Google Scholar 

  15. Hertling C., Sevenheck C.: Nilpotent orbits of a generalization of Hodge structures. J. Reine Angew. Math. 609, 23–80 (2007)

    MATH  MathSciNet  Google Scholar 

  16. Hertling C., Sevenheck C.: Limits of families of Brieskorn lattices and compactified classifying spaces. Adv. Math. 223, 1155–1224 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Iritani H.: An integral structure in quantum cohomology and mirror symmetry for toric orbifolds. Adv. Math. 222, 1016–1079 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Iritani, H.: tt *-geometry in quantum cohomology. arXiv:0906.1307

  19. Katzarkov, L., Kontsevich, M., Pantev, T.: Hodge theoretic aspects of mirror symmetry. In: Donagi, R.Y., Wendland, K. (eds.) From Hodge theory to integrability and TQFT: tt*-geometry. Proceedings of Symposia in Pure Mathematics, vol. 78, pp. 87–174. American Mathematical Society (2007)

  20. Levelt A.: Jordan decomposition for a class of singular differential operators. Ark. Math. 13, 1–27 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  21. Malgrange B.: Connexions méromorphies 2, Le réseau canonique. Invent. Math. 124, 367–387 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Mann E.: Orbifold quantum cohomology of weighted projective spaces. J. Algebr. Geom. 17, 137–166 (2008)

    Article  MATH  Google Scholar 

  23. Majima H.: Asymptotic analysis for integrable connections with irregular singular points, Lecture notes in mathematics. Springer, Berlin (1984)

  24. Mochizuki, T.: Kobayashi–Hitchin correspondence for tame harmonic bundles and an application. Astérisque. 309, pp. viii+117 (2006). ISBN: 978-2-85629-226-6

  25. Mochizuki, T.: Asymptotic behaviour of tame harmonic bundles and an application to pure twistor D-modules I. Mem. Amer. Math. Soc. 185(869), pp. xii+324 (2007)

    Google Scholar 

  26. Mochizuki, T.: Asymptotic behaviour of tame harmonic bundles and an application to pure twistor D-modules II. Mem. Amer. Math. Soc. 185(870), pp. xii+565 (2007)

    Google Scholar 

  27. Mochizuki T.: Kobayashi–Hitchin correspondence for tame harmonic bundles II. Geom. Topol. 13, 359–455 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Mochizuki T.: Asymptotic behaviour of variation of pure polarized TERP structures. Publ. Res. Inst. Math. Sci. 47, 419–534 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  29. Mochizuki T.: On Deligne–Malgrange lattices, resolution of turning points and harmonic bundles. Ann. Inst. Fourier (Grenoble) 59, 2819–2837 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  30. Mochizuki T.: The Stokes structure of a good meromorphic flat bundle. J. Inst. Math. Jussieu 10, 675–712 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  31. Mochizuki, T.: Wild harmonic bundles and wild pure twistor D-modules. Astérisque. 340, pp. x+607 (2011). ISBN: 978-2-85629-332-4

  32. Mochizuki, T.: Harmonic bundles and Toda lattices with opposite sign I, preprint, the first part of arXiv:1301.1718

  33. Morales, J.A.C., van der Put, M.: Stokes matrices for the quantum differential equations of some Fano varieties. arXiv:1211.5266

  34. Peters C., Steenbrink J.: Mixed Hodge structures. Springer, Berlin (2008)

    MATH  Google Scholar 

  35. Reichelt T.: A construction of Frobenius manifolds with logarithmic poles and applications. Commun. Math. Phys. 287, 1145–1187 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Reichelt, T., Sevenheck, C.: Logarithmic Frobenius manifolds, hypergeometric systems and quantum D-modules. arXiv:1010.2118

  37. Sabbah C.: Harmonic metrics and connections with irregular singularities. Ann. Inst. Fourier (Grenoble) 49, 1265–1291 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  38. Sabbah, C.: Polarizable twistor D-modules Astérisque, vol. 300. Société Mathématique de France, Paris (2005)

  39. Saito, K., Takahashi, A.: From primitive forms to Frobenius manifolds. In: From Hodge theory to integrability and TQFT tt *-geometry. Proceedings of Symposia in Pure Mathematics, vol. 78, pp. 31–48. American Mathematical Society, Providence, RI (2008)

  40. Saito M.: On the structure of Brieskorn lattice. Ann. Inst. Fourier (Grenoble) 39, 27–72 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  41. Simpson C.T.: Constructing variations of Hodge structure using Yang–Mills theory and applications to uniformization. J. Am. Math. Soc. 1, 867–918 (1988)

    Article  MATH  Google Scholar 

  42. Simpson C.T.: Harmonic bundles on noncompact curves. J. Am. Math. Soc. 3, 713–770 (1990)

    Article  MATH  Google Scholar 

  43. Simpson, C.T.: Mixed twistor structures. arXiv:alg-geom/9705006

  44. Simpson C.T.: Katz’s middle convolution algorithm. Pure Appl. Math. Q. 5, 781–852 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  45. Wasow W.: Asymptotic expansions for ordinary equations, Reprint of 1976 edition. Dover Publications, Inc., New York (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuro Mochizuki.

Additional information

Communicated by P. Deift

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mochizuki, T. Harmonic Bundles and Toda Lattices With Opposite Sign II. Commun. Math. Phys. 328, 1159–1198 (2014). https://doi.org/10.1007/s00220-014-1994-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-1994-0

Keywords

Navigation