Skip to main content
Log in

On classification ofN=2 supersymmetric theories

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We find a relation between the spectrum of solitons of massiveN=2 quantum field theories ind=2 and the scaling dimensions of chiral fields at the conformal point. The condition that the scaling dimensions be real imposes restrictions on the soliton numbers and leads to a classification program for symmetricN=2 conformal theories and their massive deformations in terms of a suitable generalization of Dynkin diagrams (which coincides with the A-D-E Dynkin diagrams for minimal models). The Landau-Ginzburg theories are a proper subset of this classification. In the particular case of LG theories we relate the soliton numbers with intersection of vanishing cycles of the corresponding singularity; the relation between soliton numbers and the scaling dimensions in this particular case is a well known application of Picard-Lefschetz theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zamolodchikov, A.B., Zamolodchikov, Al.B.: Ann. Phys.120, 253 (1980)

    Google Scholar 

  2. Zamolodchikov, A.B.: JETP Lett.46, 160 (1987)

    Google Scholar 

  3. Zamolodchikov, Al.B.: Nucl. Phys. B342, 695 (1990)

    Article  Google Scholar 

  4. Martinec, E.: Phys. Lett. B217, 431 (1989); Vafa, C. Warner, N.P.: Phys. Lett.43, 730 (1989)

    Article  Google Scholar 

  5. Arnold, V.I., Gusein-Zade, S.M., Varčenko, A.N.: Singularities of differentiable maps. Vol. II. Boston: Birkhäuser 1988

    Google Scholar 

  6. Fendley, P., Mathur, S.D., Vafa, C., Warner, N.P.: Phys. Lett. B243, 257 (1990)

    Article  Google Scholar 

  7. Fendley, P., Intriligator, K.: Nucl. Phys. B372, 533 (1992); BUHEP-92-5, HUTP-91/A067

    Article  Google Scholar 

  8. Lerche, W., Warner, N.P.: Nucl. Phys. B358, 571 (1991)

    Article  Google Scholar 

  9. LeClair, A., Nemeschansky, D., Warner, N.P.: 1992 preprint, CLNS 92/1148, USC 92/010

  10. Cecotti, S., Vafa, C.: Nucl. Phys. B367, 359 (1991)

    Article  Google Scholar 

  11. Dubrovin, B.: Geometry and integrability of topological anti-topological fusion. Napoli preprint INFN-8/92-DSF

  12. Lerche, W., Vafa, C., Warner, N.P.: Nucl. Phys. B324, 427 (1989)

    Article  Google Scholar 

  13. Cecotti, S., Girardello, L., Pasquinucci, A.: Int. J. Mod. Phys. A6, 2427 (1991)

    Article  Google Scholar 

  14. Cecotti, S., Fendley, P., Intriligator, K., Vafa, C.: A new supersymmetric index. Preprint Harvard HUTP-92/A021, SISSA 69/92/EP, BUHEP-92-14 (1992)

  15. Cecotti, S., Vafa, C.: Ising model andN=2 supersymmetric theories. Preprints Harvard HUTP-92/A044 and SISSA-167/92/EP (1992)

  16. Witten, E.: J. Diff. Geom.17, 661 (1982)

    Google Scholar 

  17. Dubrovin, B.: Integrable systems in topological field theory. Preprint Napoli INFN-NA-IV-91/26, DSF-T-91/26 (1991)

  18. McCoy, B., Tracy, C.A., Wu, T.T.: J. Math. Phys.18, 1058 (1977); Wu, T.T., McCoy, B.M., Tracy, C.A., Barouch, E.: Phys. Rev. B13, 316 (1976)

    Article  Google Scholar 

  19. McCoy, B.M., Wu, T.T.: Phys. Rev. Lett.45, 675 (1980)

    Article  Google Scholar 

  20. McCoy, B.M., Perk, J.H.H., Wu, T.T.: Phys. Rev. Lett.46, 757 (1981)

    Article  Google Scholar 

  21. Muskhelishvili, N.I.: Singular integral equations. Groningen: Noordhoff 1953

    Google Scholar 

  22. Wasow, W.: Asymptotic expansions for ordinary differential equations. New York: Dover 1965; For a physicist's discussion see e.g. Moore, G.: Commun. Math. Phys.133, 261 (1990)

    Google Scholar 

  23. Its, A.R., Novokshenov, V.Yu.: The isomonodromic deformation method in the theory of Painlevé equations. Lectures Notes in Mathematics 1191. Berlin, Heidelberg, New York: Springer 1986

    Google Scholar 

  24. Sato, M., Miwa, T., Jimbo, M.: Publ. R.I.M.S.14, 223 (1978);15, 201, 577, 871 (1979);16, 531 (1980);17, 137 (1981)

    Google Scholar 

  25. Jimbo, M., Miwa, T.: Aspects of holonomic quantum fields. Lecture Notes in Phys. Vol. 126. Berlin, Heidelberg, New York: Springer 1980, pp. 429–491

    Google Scholar 

  26. Jimbo, M., Miwa, T.: Integrable systems and infinite dimensional Lie algebras. In: Integrable systems in statistical mechanics, D'Ariano, G.M., Montorsi, A., Rasetti, M.G. (eds.) Singapore: World Scientific 1988;

    Google Scholar 

  27. Jimbo, M.: Proceedings of Symposia in Pure Mathematics49, 379 (1980)

    Google Scholar 

  28. Flaschka, H., Newell, A.C.: Commun. Math. Phys.76, 67 (1980)

    Article  Google Scholar 

  29. Cecotti, S., Vafa, C.: Phys. Rev. Lett.68, 903 (1992) Cecotti, S., Vafa, C.: Mod. Phys. Lett. A7, 1715 (1992)

    Article  Google Scholar 

  30. Abdalla, E., Forger, M., Lima Santos, A.: Nucl. Phys. B256, 145 (1985) Abdalla, E., Lima Santos, A.: Phys. Rev. D29, 1851 (1984) Kurak, V., Koberle, R.: Phys. Rev. D36, 627 (1987)

    Article  Google Scholar 

  31. Sirovich, L.: Techniques of asymptotic analysis. New York: Springer 1971

    Google Scholar 

  32. Lazzeri, F.: Some remarks on the Picard-Lefschetz monodromy. In: Quelques journées singulières. Centre de Mathematique de l'Ecole Polytechnique, Paris 1974

    Google Scholar 

  33. Varčenko, A.N.: Sov. Math. Dokl.260, 272 (1981)

    Google Scholar 

  34. Deligne, P.: Publ. Math. I.H.E.S.40, 5 (1971) Deligne, P.: Publ. Math. I.H.E.S.44, 5 (1973)

    Google Scholar 

  35. Schmid, W.: Invent. Math.22, 211 (1973)

    Article  Google Scholar 

  36. Alvarez-Gaumé, L., Ginsparg, P.: Commun. Math. Phys.102, 311 (1985)

    Article  Google Scholar 

  37. Griffitsh, P., Harris, J.: Principles of algebraic geometry. New York: Wiley 1978

    Google Scholar 

  38. Weil, A.: Introdution a les Variétés Kählériennes. Paris: Hermann 1958

    Google Scholar 

  39. Griffiths, P.: Topics in transcendental algebraic geometry. Ann. Math. Studies 106. Princeton, NJ: Princeton University Press 1984

    Google Scholar 

  40. Kronecker, L.: Zwei Sätze über Gleichungen mit ganzzahligen Coefficients. Crelle 1857, Oeuvres 105

  41. Goodman, F.M., de la Harpe, P., Jones, V.F.R.: Coxeter graphs and tower of algebras. Mathematical Sciences Research Institute Publications 14. Berlin, Heidelberg, New York: Springer 1989

    Google Scholar 

  42. Ireland, K., Rosen, M.: A classical introduction to modern number theory. Berlin: Springer 1982; Sivaramakrishnan, R.: Classical theory of arithmetic functions. New York: Dekkler 1989

    Google Scholar 

  43. Markoff, A.A.: Math. Ann.15, 381 (1879) Hurwitz, A.: Archiv. der Math. und Phys.3 (14), 185 (1907) Mordell, L.J.: J. Lond. Math. Soc.28, 500 (1953) Schwartz, H., Muhly, H.T.: J. Lond. Math. Soc.32, 379 (1957)

    Article  Google Scholar 

  44. Mordell, L.J.: Diophantine equations. London: Academic Press 1969

    Google Scholar 

  45. Gantmacher, F.R.: The theory of matrices. London: Chelsea 1960

    Google Scholar 

  46. Kitaev, A.V.: The method of isomonodromic deformations for degenerate third Painlevé equation in questions of quantum field theory and statistical physics 8 (Zap. Nauch. Semin. LOMI v. 161) ed. Popov, V.N., Kulish, P.P. Leningrad: Nauka (in Russian)

  47. Barth, W., Peters, C., van der Ven, A.: Compact complex surfaces. Berlin: Springer 1984

    Google Scholar 

  48. Boubaki, N.: Groupes et algébres de Lie. Paris: Hermann 1968

    Google Scholar 

  49. Coxeter, H.S.M.: Duke Math. J.18, 765 (1951)

    Article  Google Scholar 

  50. Vafa, C.: Mod. Phys. Lett. A4, 1169 (1989)

    Article  Google Scholar 

  51. McKay, J.: Cartan matrices, Finite groups of quaternions, and Klenian singularities. Proc. Am. Math. Soc. 153 (1981)

  52. Zaslow, E.: Topological orbifold models and quantum cohomology rings. Commun. Math. Phys. (to appear)

  53. Lerche, W., Vafa, C., Warner, N.P.: Nucl. Phys. B324, 427 (1989)

    Article  Google Scholar 

  54. Gepner, D.: Commun. Math. Phys.141, 381 (1991)

    Article  Google Scholar 

  55. Intriligator, K.: Mod. Phys. Lett. A6, 3543 (1991)

    Article  Google Scholar 

  56. Lerche, W., Warner, N.P.: Nucl. Phys. B358, 571 (1991)

    Article  Google Scholar 

  57. Kazama, Y., Suzuki, H.: Phys. Lett. B216, 112 (1989); Nucl. Phys. B321, 232 (1989)

    Article  Google Scholar 

  58. Ferrara, S., Strominger, A.:N=2 spacetime supersymmetry and Calabi-Yau moduli space. Presented at Texas A & M University, String '89 Workshop Cecotti, S.: Commun. Math. Phys.131, 517 (1990) Strominger, A.: Commun. Math. Phys.133, 163 (1990) Candelas, P., de la Ossa, X.C.: Moduli Space of Calabi-Yau Manifolds. University of Texas Report, UTTG-07-90 D'Auria, R., Castellani, L., Ferrara, S.: Class. Quant. Grav.1, 1767 (1990)

  59. D'Adda, A., Davis, A.C., Di Vecchia, P., Salomonson, P.: Nucl. Phys. B222, 45 (1983)

    Article  Google Scholar 

  60. Witten, E.: Nucl. Phys. B340, 281 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S.-T. Yau

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cecotti, S., Vafa, C. On classification ofN=2 supersymmetric theories. Commun.Math. Phys. 158, 569–644 (1993). https://doi.org/10.1007/BF02096804

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02096804

Keywords

Navigation