Skip to main content
Log in

Electromagnetism, Local Covariance, the Aharonov–Bohm Effect and Gauss’ Law

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We quantise the massless vector potential A of electromagnetism in the presence of a classical electromagnetic (background) current, j, in a generally covariant way on arbitrary globally hyperbolic spacetimes M. By carefully following general principles and procedures we clarify a number of topological issues. First we combine the interpretation of A as a connection on a principal U(1)-bundle with the perspective of general covariance to deduce a physical gauge equivalence relation, which is intimately related to the Aharonov–Bohm effect. By Peierls’ method we subsequently find a Poisson bracket on the space of local, affine observables of the theory. This Poisson bracket is in general degenerate, leading to a quantum theory with non-local behaviour. We show that this non-local behaviour can be fully explained in terms of Gauss’ law. Thus our analysis establishes a relationship, via the Poisson bracket, between the Aharonov–Bohm effect and Gauss’ law – a relationship which seems to have gone unnoticed so far. Furthermore, we find a formula for the space of electric monopole charges in terms of the topology of the underlying spacetime. Because it costs little extra effort, we emphasise the cohomological perspective and derive our results for general p-form fields A (p <  dim(M)), modulo exact fields, for the Lagrangian density \({\mathcal{L} = \frac{1}{2} dA\wedge*dA+ A\wedge*j}\) . In conclusion we note that the theory is not locally covariant, in the sense of Brunetti–Fredenhagen–Verch. It is not possible to obtain such a theory by dividing out the centre of the algebras, nor is it physically desirable to do so. Instead we argue that electromagnetism forces us to weaken the axioms of the framework of local covariance, because the failure of locality is physically well-understood and should be accommodated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashtekar A., Isham C.J.: Inequivalent observable algebras. Another ambiguity in field quantisation. Phys. Lett. B 274, 393–398 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  2. Ashtekar A., Sen A.: On the role of space–time topology in quantum phenomena: superselection of charge and emergence of nontrivial vacua. J. Math. Phys. 21, 526–533 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bär C., Ginoux N., Pfäffle F.: Wave Equations on Lorentzian Manifolds and Quantization. EMS, Zürich (2007)

    Book  MATH  Google Scholar 

  4. Benini, M., Dappiaggi, C., Schenkel, A.: Quantum field theory on affine bundles. Ann. Henri Poincaré (2013). doi:10.1007/s00023-013-0234-z

  5. Benini, M., Dappiaggi, C., Schenkel, A.: Quantized Abelian principal connections on Lorentzian manifolds. arXiv:1303.2515 [math-ph] (2013)

  6. Bernal A.N., Sánchez M.: Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes. Commun. Math. Phys. 257, 43–50 (2005)

    Article  ADS  MATH  Google Scholar 

  7. Bernal A.N., Sánchez M.: Further results on the smoothability of Cauchy hypersurfaces and Cauchy time functions. Lett. Math. Phys. 77, 183–197 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Binz E., Honegger R., Rieckers A.: Construction and uniqueness of the C*-Weyl algebra over a general pre-symplectic space. J. Math. Phys. 45(7), 2885–2907 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Bongaarts P.J.M.: Maxwell’s equations in axiomatic quantum field theory. I. Field tensor and potentials. J. Math. Phys. 18(7), 1510–1516 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  10. Bott R., Tu L.W.: Differential Forms in Algebraic Topology. Graduate Texts in Mathematics, vol. 82. Springer, New York (1982)

    Book  Google Scholar 

  11. Brunetti R., Fredenhagen K., Verch R.: The generally covariant locality principle: a new paradigm for local quantum field theory. Commun. Math. Phys. 237, 31–68 (2003)

    ADS  MATH  MathSciNet  Google Scholar 

  12. Dappiaggi C., Lang B.: Quantization of Maxwell’s equations on curved backgrounds and general local covariance. Lett. Math. Phys. 101, 265–287 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Dappiaggi C., Siemssen D.: Hadamard states for the vector potential on asymptotically flat spacetimes. Rev. Math. Phys. 25, 13500025 (2013)

    Article  MathSciNet  Google Scholar 

  14. de Rham G.: Differentiable Manifolds, Translated by F. R. Smith. Springer, Berlin (1984)

    Book  Google Scholar 

  15. Dimock J.: Algebras of local observables on a manifold. Commun. Math. Phys. 77, 219–228 (1980)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Dimock J.: Quantized electromagnetic field on a manifold. Rev. Math. Phys. 4, 223–233 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dowling J.P., Williams C.P.: Maxwell duality, Lorentz invariance, and topological phase. Phys. Rev. Lett. 83, 2486–2489 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Fewster, C.: On the notion of ”the same physics in all spacetimes”. In: Proceedings ”Quantum Field Theory and Gravity”, Regensburg (2010, to appear)

  19. Fewster C.J., Hunt D.S.: Quantization of linearized gravity in cosmological vacuum spacetimes. Rev. Math. Phys. 25, 1330003 (2013)

    Article  MathSciNet  Google Scholar 

  20. Fewster C.J., Pfenning M.J.: A quantum weak energy inequality for spin-one fields in curved spacetime. J. Math. Phys. 44, 4480–4513 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Fewster C.J., Verch R.: Dynamical locality of the free scalar field. Ann. Henri Poincaré 13, 1675–1709 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Finster, F., Strohmaier, A.: Gupta–Bleuler Quantization of the Maxwell Field in Globally Hyperbolic Space–Times. arXiv:1307.1632 [math-ph] (2013)

  23. Fredenhagen, K.: Structural aspects of gauge theories in the algebraic framework of quantum field theory. FREIBURG-THEP 82/9, Talk presented at the Colloqium in honour of Prof. Rudolf Haag at the occasion of his 60th birthday, Hamburg (1982)

  24. Fredenhagen K., Rejzner K.: Batalin–Vilkovisky formalism in perturbative algebraic quantum field theory. Commun. Math. Phys. 317, 697–725 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Friedlander F.G.: The Wave Equation on a Curved Space–Time. Cambridge University Press, Cambridge (1975)

    MATH  Google Scholar 

  26. Fulling S.A., Narcowich F.J., Wald R.M.: Singularity structure of the two-point function in quantum field theory in curved spacetime. Ann. Phys. (N.Y.) 136, 243–272 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  27. Geroch R.: Spinor structure of space–times in general relativity. I. J. Math. Phys. 9, 1739–1744 (1968)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Geroch R.: Spinor structure of space–times in general relativity. II. J. Math. Phys. 11, 343–348 (1970)

    Article  ADS  MATH  Google Scholar 

  29. Ginoux, N.: Linear wave equations. In: Bär, C., Fredenhagen, K. (eds.) Quantum Field Theory on Curved Spacetimes, Springer, Berlin (2009)

  30. Haag R.: Local Quantum Physics. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  31. Hack T.-P., Schenkel A.: Linear bosonic and fermionic quantum gauge theories on curved spacetimes. Gen. Rel. Grav. 45(5), 877–910 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Hirsch M.W.: Differential Topology. Springer, New York (1994)

    Google Scholar 

  33. Hollands S.: Renormalized quantum Yang–Mills fields in curved spacetime. Rev. Math. Phys. 20, 1033–1172 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  34. Hörmander L.: The Analysis of Linear Partial Differential Operators I. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  35. Kelley J.L., Namioka I.: Linear Topological Spaces, Van Nostrand. Princeton, N.J. (1963)

    Book  Google Scholar 

  36. Khavkine, I.: Characteristics, Conal Geometry and Causality in Locally Covariant Field Theory. arXiv:1211.1914 [gr-qc] (2012)

  37. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Interscience, New York (1963-1969)

  38. Lang, B.: Homologie und die Feldalgebra des quantisierten Maxwellfeldes. Diplomarbeit—(2010) Universität Freiburg. www.desy.de/uni-th/theses/Dipl_Lang.pdf

  39. Nakahara M.: Geometry, Topology and Physics. Hilger, Bristol (1990)

    Book  MATH  Google Scholar 

  40. Peshkin, M., Tonomura, A.: The Aharonov–Bohm effect. In: Lecture Notes in Physics 340. Springer, Berlin (1989)

  41. Peierls R.E.: The commutation laws of relativistic field theory. Proc. Roy. Soc. Lond. Ser. A. 214, 143–157 (1952)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. Pfenning M.J.: Quantization of the Maxwell field in curved spacetimes of arbitrary dimension. Class. Quantum Grav. 26, 135017 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  43. Sahlmann H., Verch R.: Microlocal spectrum condition and Hadamard form for vector-valued quantum fields in curved spacetime. Rev. Math. Phys. 13(10), 1203–1246 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  44. Sánchez M.: On the geometry of static spacetimes. Nonlinear Anal. 63, e455–e463 (2005)

    Article  MATH  Google Scholar 

  45. Sanders K.: A note on spacelike and timelike compactness. Class. Quantum Grav. 30, 115014 (2013)

    Article  ADS  Google Scholar 

  46. Wald R.M.: General Relativity. University of Chicago Press, Chicago (1984)

    Book  MATH  Google Scholar 

  47. Waldmann S.: Poisson-Geometrie und Deformationsquantisierung. Springer, Berlin (2007)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ko Sanders.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanders, K., Dappiaggi, C. & Hack, TP. Electromagnetism, Local Covariance, the Aharonov–Bohm Effect and Gauss’ Law. Commun. Math. Phys. 328, 625–667 (2014). https://doi.org/10.1007/s00220-014-1989-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-1989-x

Keywords

Navigation