Skip to main content
Log in

U(1)-Gauge Theories on \(G_2\)-Manifolds

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

In this paper, we investigate two types of U(1)-gauge field theories on \(G_2\)-manifolds. One is the U(1)-Yang–Mills theory which admits the classical instanton solutions. We show that \(G_2\)-manifolds emerge from the anti-self-dual U(1) instantons, which is an analogy of Yang’s result for Calabi–Yau manifolds. The other one is the higher-order U(1)-Chern–Simons theory as a generalization of Kähler–Chern–Simons theory. We introduce the notion of higher-order U(1)-instanton, as the vacuum configurations of higher-order U(1)-Chern–Simons theory. By suitable choice of gauge and regularization technique, we calculate the partition function under semiclassical approximation. Finally, to make sure of the invariance at quantum level under the large gauge transformations, we use Deligne–Beilinson cohomology theory to give the higher-order U(1)-Chern–Simons actions (U(1)-BF-type actions) for nontrivial U(1)-principle bundles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Some authors also call those \(G_2\)-instantons.

References

  1. Candelas, P., Raine, D.J.: Spontaneous compactification and supersymmetry in \(d=11\) supergravity. Nucl. Phys. B 248, 415–422 (1984)

    ADS  Google Scholar 

  2. Atiyah, M., Witten, E.: M-theory dynamics on a manifold of \(G_2\) holonomy. Adv. Theor. Math. Phys. 6, 1–106 (2001)

    Google Scholar 

  3. Bryant, R.: Metrics with exceptional holonomy. Ann. Math. 126, 525–576 (1987)

    MathSciNet  Google Scholar 

  4. Bryant, R., Salamon, S.: On the construction of some complete metrics with exceptional holonomy. Duke Math. J. 58, 829–850 (1989)

    MathSciNet  Google Scholar 

  5. Joyce, D.: Compact Riemannian 7-manifolds with holonomy \(G_2\) I. J. Differ. Geom. 43, 291–328 (1996)

    Google Scholar 

  6. Joyce, D.: Compact Riemannian 7-manifolds with holonomy \(G_2\) II. J. Differ. Geom. 43, 329–375 (1996)

    Google Scholar 

  7. Kovalev, A.: Twisted connected sums and special Riemannian holonomy. J. Reine Angew. Math. 565, 125–160 (2003)

    MathSciNet  Google Scholar 

  8. Yang, H.-S.: Gravitational instantons from gauge theory. Phys. Rev. Lett. 96, 201602 (2006)

    ADS  MathSciNet  Google Scholar 

  9. Yang, H.-S.: Emergent gravity from noncommutative spacetime. Int. J. Mod. Phys. A 24, 4473 (2009)

    ADS  Google Scholar 

  10. Yang, H.-S.: Emergent spacetime and the origin of gravity. J. High Energy Phys. 05, 012 (2009)

    ADS  MathSciNet  Google Scholar 

  11. Yang, H.-S.: Emergent geometry and quantum gravity. Mod. Phys. Lett. A 25, 2381 (2010)

    ADS  MathSciNet  Google Scholar 

  12. Oh, J., Park, C., Yang, H.-S.: Yang–Mills instantons from gravitational instantons. J. High Energy Phys. 04, 087 (2011)

    ADS  MathSciNet  Google Scholar 

  13. Yang, H.-S.: Towards a background independent quantum gravity. J. Phys. Conf. Ser. 343, 012132 (2012)

    Google Scholar 

  14. Lee, S., Roychowdhury, R., Yang, H.-S.: Notes on emergent gravity. J. High Energy Phys. 09, 030 (2012)

    ADS  MathSciNet  Google Scholar 

  15. Lee, S., Roychowdhury, R., Yang, H.-S.: Test of emergent gravity. Phys. Rev. D 88, 086007 (2013)

    ADS  Google Scholar 

  16. Oh, J., Yang, H.-S.: Einstein manifolds as Yang–Mills instantons. Mod. Phys. Lett. A 28, 1350097 (2013)

    ADS  MathSciNet  Google Scholar 

  17. Yang, H.-S.: Quantization of emergent gravity. Int. J. Mod. Phys. A 30, 1550016 (2015)

    ADS  MathSciNet  Google Scholar 

  18. Yang, H.-S.: Calabi–Yau manifolds from noncommutative Hermitian \(U(1)\) instantons. Phys. Rev. D 91, 104002 (2015)

    ADS  MathSciNet  Google Scholar 

  19. Corrigan, E., Devchand, C., Fairlie, D.B., Nuyts, J.: First-order equations for gauge fields inspaces of dimension greater than four. Nucl. Phys. B 214, 452–464 (1983)

    ADS  Google Scholar 

  20. Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351–399 (1989)

    ADS  MathSciNet  Google Scholar 

  21. Bar-Natan, D., Witten, E.: Perturbative expansion of Chern–Simons theory with noncompact gauge group. Commun. Math. Phys. 141, 423–440 (1991)

    ADS  MathSciNet  Google Scholar 

  22. Adams, D.: The semiclassical approximation for the Chern–Simons partition function. Phys. Lett. B 417, 53–60 (1998)

    ADS  MathSciNet  Google Scholar 

  23. Mihaela, M.: Abelian Chern–Simons theory. II. A functional integral approach. J. Math. Phys 39, 207 (1998)

    ADS  MathSciNet  Google Scholar 

  24. Donaldson, S., Thomas, R.: Gauge theory in higher dimensions. In: Prepared for Conference on Geometric Issues in Foundations of Science in honor of Sir Roger Penrose’s 65th Birthday, Oxford, England, pp. 25–29 (1996)

  25. Sá Earp, H.: Instantons on \(G_2\)-manifolds, PhD thesis. Imperial College London (2009)

  26. Sá Earp, H.: Generalised Chern–Simons theory and \(G_2\)-instantons over associative fibrations. SIGMA 10, 083 (2014)

    Google Scholar 

  27. Sá Earp, H.: \(G_2\)-instantons over asymptotically cylindrical manifolds. Geom. Topol. 19, 61–111 (2015)

    MathSciNet  Google Scholar 

  28. Sá Earp, H., Walpuski, T.: \(G_2\)-instantons on twisted connected sums. Geom. Topol. 19, 1263–1285 (2015)

    MathSciNet  Google Scholar 

  29. Menet, G., Nordström, J., Sá Earp, H.: Construction of \(G_2\)-instantons via twisted connected sums. Math. Res. Lett. 28, 471–509 (2021)

    MathSciNet  Google Scholar 

  30. de Boer, J., de Medeiros, P., Sinkovics, A.: Open \(G_2\) strings. J. High Energy Phys. 02, 012 (2008)

    Google Scholar 

  31. Beasley, C., Witten, E.: Non-Abelian localization for Chern–Simons theory. J. Differ. Geom. 70, 183–323 (2005)

    MathSciNet  Google Scholar 

  32. Tian, G.: Gauge theory and calibrated geometry. Ann. Math. 151, 193 (2000)

    MathSciNet  Google Scholar 

  33. Nair, P., Schiff, J.: A Kähler–Chern–Simons theory and quantization of instanton moduli spaces. Phys. Lett. B 246, 423 (1990)

    ADS  MathSciNet  Google Scholar 

  34. Nair, P., Schiff, J.: Kähler–Chern–Simons theory and symmetries of anti self-dual gauge fields. Nucl. Phys. B 371, 329 (1992)

    ADS  Google Scholar 

  35. Liu, H.: Dimension of conformal blocks in five dimensional Kähler–Chern–Simons theory. J. Math. Phys. 51, 043513 (2010)

    ADS  MathSciNet  Google Scholar 

  36. Hu, S., Hu, Z.: Classical and quantum aspects of five-dimensional Chern–Simons gauge theory. Int. J. Mod. Phys. A 29, 1450003 (2014)

    ADS  MathSciNet  Google Scholar 

  37. Blau, M., Thompson, G.: Derivation of the Verlinde formula from Chern–Simons theory and the \(G/G\) model. Nucl. Phys. B 408, 345–390 (1993)

    ADS  MathSciNet  Google Scholar 

  38. Hahn, A.: The non-Abelian Chern–Simons path integral on \(M=\Sigma \times S^1\) in the torus gauge: a review. arXiv:1805.00248

  39. Schwarz, A.: The partition function of a degenerate functional. Commun. Math. Phys. 67, 1–16 (1979)

    ADS  MathSciNet  Google Scholar 

  40. Pestun, V., Witten, E.: The Hitchin functionals and the topological B-bodel at one loop. Lett. Math. Phys. 2005(74), 21–51 (2005)

    ADS  Google Scholar 

  41. Hu, S., Hu, Z., Lan, G.: On Hodge theory for the generalized geometry (I). J. Geom. Phys. 70, 172–184 (2013)

    ADS  MathSciNet  Google Scholar 

  42. Brylinski, J.: Loop Spaces, Characteristic Classes and Geometric Quantization. Birkhäuser (1993)

    Google Scholar 

  43. Bauer, M., Girardi, G., Stora, R., Thuillier, F.: A class of topological actions. J. High Energy Phys. 08, 027 (2005)

    ADS  MathSciNet  Google Scholar 

  44. Guadagnini, E., Thuillier, F.: Path-integral invariants in abelian Chern–Simons theory. Nucl. Phys. B 882, 450–484 (2014)

    ADS  MathSciNet  Google Scholar 

  45. Hu, S., Hu, Z.: On geometry of the (generalized) \(G_2\)-manifolds. Int. J. Mod. Phys. A 30, 1550112 (2015)

    ADS  Google Scholar 

  46. Apostolov, V., Salamon, S.: Kähler reduction of metrics with holonomy \(G_2\). Commun. Math. Phys. 246, 43–61 (2004)

    ADS  Google Scholar 

  47. Jeffrey, L., McLellan, B.: Eta-invariants and anomalies in \(U(1)\)-Chern–Simons theory, Chern–Simons gauge theory: 20 years after. In: AMS/IP Studies in Advanced Mathematics. American Mathematical Society, Providence, vol. 50, pp. 173–199 (2011)

  48. McLellan, B.: Localization in abelian Chern–Simons theory. J. Math. Phys. 54, 023507 (2013)

    ADS  MathSciNet  Google Scholar 

  49. Grady, D., Sati, H.: Higher-twisted periodic smooth Deligne cohomology. Homol. Homotopy Appl. 21, 129–159 (2019)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Hu.

Additional information

Communicated by Christoph Kopper.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Zong, R. U(1)-Gauge Theories on \(G_2\)-Manifolds. Ann. Henri Poincaré 25, 2453–2487 (2024). https://doi.org/10.1007/s00023-023-01354-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-023-01354-6

Navigation