Skip to main content
Log in

Quantization of Maxwell’s Equations on Curved Backgrounds and General Local Covariance

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We develop a quantization scheme for Maxwell’s equations without source on an arbitrary oriented four-dimensional globally hyperbolic spacetime. The field strength tensor is the key dynamical object and it is not assumed a priori that it descends from a vector potential. It is shown that, in general, the associated field algebra can contain a non-trivial centre and, on account of this, such a theory cannot be described within the framework of general local covariance unless further restrictive assumptions on the topology of the spacetime are taken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashtekar A., Sen A.: On the role of space-time topology in quantum phenomena: superselection of charge and emergence of nontrivial vacua. J. Math. Phys. 21, 526 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  2. Brunetti, R., Fredenhagen, K.: Towards a Backround Independent Formulation of Pertubative Quantum Gravity [arXiv:gr-qc/0603079v3]

  3. Bär, C., Ginoux, N., Pfäffle, F.: Wave Equations on Lorentzian Manifolds and Quantization. European Mathematical Society (2007)

  4. Bernal A.N., Sanchez M.: On Smooth Cauchy hypersurfaces and Geroch’s splitting theorem. Commun. Math. Phys. 243, 461–470 (2003) [gr-qc/0306108]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Bernal A.N., Sanchez M.: Smoothness of time functions and the metric splitting of globally hyperbolic space-times. Commun. Math. Phys. 257, 43 (2005) [gr-qc/0401112]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Bernal A.N., Sanchez M.: Further results on the smoothability of Cauchy hypersurfaces and Cauchy time functions. Lett. Math. Phys. 77, 183–197 (2006) [gr-qc/0512095]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Brunetti R., Fredenhagen K., Verch R.: The generally covariant locality principle: A new paradigm for local quantum physics. Commun. Math. Phys. 237, 31 (2003) [arXiv:math-ph/0112041]

    MathSciNet  ADS  MATH  Google Scholar 

  8. Bongaarts P.J.M.: Maxwell’s equations in axiomatic quantum field theory. 1. Field tensor and potentials. J. Math. Phys. 18, 1510 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  9. Bott R., Tu L.W.: Differential Forms in Algebraic Topology. Springer, Berlin (1995)

    Google Scholar 

  10. Dappiaggi, C.: Remarks on the Reeh-Schlieder property for higher spin free fields on curved spacetimes [arXiv:1102.5270 [math-ph

  11. Dimock J.: Quantized electromagnetic field on a manifold. Rev. Math. Phys. 4, 223 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fewster C.J., Pfenning M.J.: A Quantum weak energy inequality for spin one fields in curved space-time. J. Math. Phys. 44, 4480 (2003) [gr-qc/0303106]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Fredenhagen K. : Generalizations of the theory of superselection sectors. In: Palermo 1989, Proceedings, The algebraic theory of superselection sectors and field theory, pp. 379–387 (1989)

  14. Fredenhagen, K.: Superselection Sectors. Available at http://unith.desy.de/sites/site_unith/content/e20/e72/e180/e193/infoboxContent203/superselect.ps.gz

  15. Hollands, S.: Renormalized quantum Yang-Mills fields in curved spacetime. Rev. Math. Phys. 20, 1033 (2008) [arXiv:0705.3340 [gr-qc]]

    Google Scholar 

  16. Küskü, M.: The free Maxwell field in curved space-time. Diplomarbeit (2001) Universität Hamburg. Available at ftp://ftp.desy.de/pub/preprints/desy/thesis/desy-thesis-01-040.ps.gz

  17. Lang, B.: Homologie und die Feldalgebra des quantisierten Maxwellfeldes. Diplomarbeit (2010) Universität Freiburg. Available at http://www.desy.de/uni-th/theses/Dipl_Lang.pdf

  18. Lee J.M.: Introduction to Smooth Manifolds. Springer, Berlin (2003)

    Google Scholar 

  19. Lichnerowicz A.: Propagateurs et commutateurs en relativité genèrale. Inst. Hautes Études Sci. Pub. Math. 10, 56 (1961)

    MathSciNet  Google Scholar 

  20. O’Neill B.: Semi-Riemannian Geometry: with Applications to Relativity. Academic Press, Dublin (1983)

    MATH  Google Scholar 

  21. Pfenning, M. J.: Quantization of the Maxwell field in curved spacetimes of arbitrary dimension. Class. Quant. Grav. 26, 135017 (2009) [arXiv:0902.4887 [math-ph]]

    Google Scholar 

  22. Sakurai J.J.: Modern Quantum Mechanics. Addison-Wesley, Menlo Park (1994)

    Google Scholar 

  23. Sanders K.: The locally covariant Dirac field. Rev. Math. Phys. 22, 381 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Dappiaggi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dappiaggi, C., Lang, B. Quantization of Maxwell’s Equations on Curved Backgrounds and General Local Covariance. Lett Math Phys 101, 265–287 (2012). https://doi.org/10.1007/s11005-012-0571-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-012-0571-8

Mathematics Subject Classification

Keywords

Navigation