Skip to main content
Log in

Transition to Longitudinal Instability of Detonation Waves is Generically Associated with Hopf Bifurcation to Time-Periodic Galloping Solutions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that transition to longitudinal instability of strong detonation solutions of reactive compressible Navier–Stokes equations is generically associated with Hopf bifurcation to nearby time-periodic “galloping”, or “pulsating”, solutions, in agreement with physical and numerical observation. In the process, we determine readily numerically verifiable stability and bifurcation conditions in terms of an associated Evans function, and obtain the first complete nonlinear stability result for strong detonations of the reacting Navier–Stokes equations, in the limit as amplitude (hence also heat release) goes to zero. The analysis is by pointwise semigroup techniques introduced by the authors and collaborators in previous works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abouseif G., Toong T.Y.: Theory of unstable one-dimensional detonations. Combust. Flame 45, 67–94 (1982)

    Article  Google Scholar 

  2. Alexander J., Gardner R., Jones C.K.R.T.: A topological invariant arising in the analysis of traveling waves. J. Reine Angew. Math. 410, 167–212 (1990)

    MATH  MathSciNet  Google Scholar 

  3. Alpert R.L., Toong T.Y.: Periodicity in exothermic hypersonic flows about blunt projectiles. Acta Astron. 17, 538–560 (1972)

    Google Scholar 

  4. Barker B., Humpherys J., Rudd K., Zumbrun K.: Stability of viscous shocks in isentropic gas dynamics. Commun. Math. Phys 281(1), 231–249 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Batchelor G.K.: An introduction to fluid dynamics. Second paperback edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  6. Beck M., Sandstede B., Zumbrun K.: Nonlinear stability of time-periodic shocks. Arc. Rat. Mech. Anal. 196, 1011–1076 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bourlioux A., Majda A.: Theoretical and numerical structure of unstable detonations. Proc. R. Soc. Lond. A 350, 29–68 (1995)

    MATH  ADS  Google Scholar 

  8. Bourlioux A., Majda A., Roytburd V.: Theoretical and numerical structure for unstable one-dimensional detonations. SIAM J. Appl. Math. 51, 303–343 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Bridges T.J., Derks G., Gottwald G.: Stability and instability of solitary waves of the fifth-order KdV equation: a numerical framework. Phys. D 172(1-4), 190–216 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Brin, L.: Numerical testing of the stability of viscous shock waves. Doctoral thesis, Indiana University, 1998

  11. Brin L. Q.: Numerical testing of the stability of viscous shock waves. Math. Comp. 70(235), 1071–1088 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Brin, L., Zumbrun, K.: Analytically varying eigenvectors and the stability of viscous shock waves. In: Proc. Seventh Workshop on Partial Differential Equations, Part I (Rio de Janeiro, 2001). Mat. Contemp. 22, 19–32, 2002

  13. Buckmaster, J.D.: An introduction to combustion theory. The mathematics of combustion, Frontiers in App. Math. Philadelphia, SIAM, 1985, pp. 3–46

  14. Buckmaster J., Neves J.: One-dimensional detonation stability: the spectrum for infinite activation energy. Phys. Fluids 31(12), 3572–3576 (1988)

    Article  ADS  Google Scholar 

  15. Carr J.,: Applications of centre manifold theory. Applied Mathematical Sciences, 35. New York-Berlin: Springer-Verlag, 1981

  16. Chen G.Q.: Global solutions to the compressible Navier-Stokes equations for a reacting mixture. SIAM J. Math. Anal. 23(3), 609–634 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Courant R., Friedrichs K.O.: Supersonic flow and shock waves. Springer-Verlag, New York (1976)

    MATH  Google Scholar 

  18. Edmunds D.E., Evans W.D.: Spectral theory and differential operators. Oxford University Press, Oxford (1987)

    MATH  Google Scholar 

  19. Erpenbeck J.J.: Stability of steady-state equilibrium detonations. Phys. Fluids 5, 604–614 (1962)

    Article  MathSciNet  ADS  Google Scholar 

  20. Erpenbeck J.J.: Stability of idealized one-reaction detonations. Phys. Fluids 7, 684 (1964)

    Article  MATH  ADS  Google Scholar 

  21. Erpenbeck J.J.: Detonation stability for disturbances of small transverse wave length. Phys. Fluids 9, 1293–1306 (1966)

    Article  MATH  ADS  Google Scholar 

  22. Erpenbeck J.J.: Nonlinear theory of unstable one–dimensional detonations. Phys. Fluids 10(2), 274–289 (1967)

    Article  MATH  ADS  Google Scholar 

  23. Fickett W.: Stability of the square wave detonation in a model system. Physica 16D, 358–370 (1985)

    MathSciNet  ADS  Google Scholar 

  24. Fickett, W.: Detonation in miniature. In The mathematics of combustion, Frontiers in App. Math. Philadelphia: SIAM, 1985, pp.133–182

  25. Fickett, W., Davis, W.C.: Detonation, Berkeley, CA: University of California Press, 1979, reissued as Detonation: Theory and experiment Mineola, New York: Dover Press, 2000

  26. Fickett W., Wood W.W.: Flow calculations for pulsating one-dimensional detonations. Phys. Fluids 9, 903–916 (1966)

    Article  ADS  Google Scholar 

  27. Gardner R.: On the detonation of a combustible gas. Trans. Amer. Math. Soc. 277(2), 431–468 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  28. Gohberg, I., Krein, M.G.: Introduction to the theory of linear nonselfadjoint operators. Translations of mathematical monographs, Volume 18, Providence, RI: Amer, Math. Soc., 1969

  29. Gardner R., Zumbrun K.: The Gap Lemma and geometric criteria for instability of viscous shock profiles. Comm. Pure Appl. Math. 51(7), 797–855 (1998)

    Article  MathSciNet  Google Scholar 

  30. Gasser I., Szmolyan P.: A geometric singular perturbation analysis of detonation and deflagration waves. SIAM J. Math. Anal. 24, 968–986 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Gasser I., Szmolyan P.: Detonation and deflagration waves with multistep reaction schemes. SIAM J. Appl. Math. 55, 175–191 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  32. Hale, J., Koçak, H.: Dynamics and bifurcations. Texts in Applied Mathematics, 3. New York: Springer-Verlag, 1991

  33. Henry, D.: Geometric theory of semilinear parabolic equations. Lecture Notes in Mathematics, Volume 840, Berlin: Springer-Verlag, 1981

  34. Howard P., Zumbrun K.: Stability of undercompressive viscous shock waves. J. Diff. Eq. 225(1), 308–360 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  35. Humpherys J., Lafitte O., Zumbrun K.: Stability of viscous shock profiles in the high Mach number limit. Commun. Math. Phys. 293(1), 1–36 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. Humpherys J., Lyng G., Zumbrun K.: Spectral stability of ideal-gas shock layers. Arch. Rat. Mech. Anal. 194(3), 1029–1079 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  37. Humpherys J., Zumbrun K.: An efficient shooting algorithm for Evans function calculations in large systems. Phys. D 220(2), 116–126 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  38. Humpherys J., Zumbrun K.: Spectral stability of small amplitude shock profiles for dissipative symmetric hyperbolic–parabolic systems. Z. Angew. Math. Phys. 53, 20–34 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  39. Jenssen H.K., Lyng G., Williams M.: Equivalence of low-frequency stability conditions for multidimensional detonations in three models of combustion. Indiana Univ. Math. J. 54(1), 1–64 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  40. Kato T.: Perturbation theory for linear operators. Springer-Verlag, Berlin Heidelberg (1985)

    Google Scholar 

  41. Kasimov A.R., Stewart D.S.: Spinning instability of gaseous detonations. J. Fluid Mech. 466, 179–203 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  42. Lee H. I., Stewart D. S.: Calculation of linear detonation instability: one-dimensional instability of plane detonation. J. Fluid Mech. 216, 102–132 (1990)

    ADS  Google Scholar 

  43. Lyng G., Zumbrun K.: A stability index for detonation waves in Majda’s model for reacting flow. Phys. D 194(1–2), 1–29 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  44. Lyng G., Zumbrun K.: One-dimensional stability of viscous strong detonation waves. Arch. Rat. Mech. Anal. 173(2), 213–277 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  45. Lyng G., Raoofi M., Texier B., Zumbrun K.: Pointwise Green Function Bounds and stability of combustion waves. J. Diff. Eqs. 233(2), 654–698 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  46. Marsden, J. E., McCracken, M.: The Hopf bifurcation and its applications. Applied Mathematical Sciences 19, Berlin-Heidelberg-New York: Springer, 1976

  47. Mascia C., Zumbrun K.: Pointwise Green’s function bounds and stability of relaxation shocks. Indiana Univ. Math. J. 51(4), 773–904 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  48. Mascia C., Zumbrun K.: Stability of small-amplitude shock profiles of symmetric hyperbolic-parabolic systems. Comm. Pure Appl. Math. 57(7), 841–876 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  49. Mascia C., Zumbrun K.: Pointwise Green function bounds for shock profiles of systems with real viscosity. Arch. Rat. Mech. Anal. 169(3), 177–263 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  50. Mascia C., Zumbrun K.: Stability of large-amplitude viscous shock profiles of hyperbolic-parabolic systems. Arch. Rat. Mech. Anal. 172(1), 93–131 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  51. Mascia C., Zumbrun K.: Stability of large-amplitude shock profiles of general relaxation systems. SIAM J. Math. Anal. 37(3), 889–913 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  52. Métivier, G., Zumbrun, K.: Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems. Mem. Amer. Math. Soc. 175(826) (2005)

  53. Pazy, A.: Semigroups of linear operators and applications to partial differential equations. Applied Mathematical Sciences, 44. New York: Springer-Verlag, 1983

  54. McVey U.B., Toong T.Y.: Mechanism of instabilities in exothermic blunt-body flows. Combus. Sci. Tech. 3, 63–76 (1971)

    Article  Google Scholar 

  55. Raoofi R., Zumbrun K.: Stability of undercompressive viscous shock profiles of hyperbolic–parabolic systems. J. Diff. Eqs. 246(4), 1539–1567 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  56. Sandstede B., Scheel A.: Hopf bifurcation from viscous shock waves. SIAM J. Math. Anal. 39(6), 2033–2052 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  57. Shizuta S., Kawashima Y.: On the normal form of the symmetric hyperbolic-parabolic systems associated with the conservation laws. Tohoku Math. J. (2) 40(3), 449–464 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  58. Short M.: An Asymptotic Derivation of the Linear Stability of the Square-Wave Detonation using the Newtonian limit. Proc. R. Soc. Lond. A 452, 2203–2224 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  59. Short M.: Multidimensional linear stability of a detonation wave at high activation energy. Siam J. Appl. Math. 57(2), 307–326 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  60. Tan D., Tesei A.: Nonlinear stability of strong detonation waves in gas dynamical combustion. Nonlinearity 10, 355–376 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  61. Texier B., Zumbrun K.: Relative Poincaré–Hopf bifurcation and galloping instability of traveling waves. Methods Appl. Anal. 12(4), 349–380 (2005)

    MATH  MathSciNet  Google Scholar 

  62. Texier B., Zumbrun K.: Galloping instability of viscous shock waves. Physica D 237(10–12), 1553–1601 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  63. Texier B., Zumbrun K.: Hopf bifurcation of viscous shock waves in compressible gas-dynamics and MHD. Arch. Rat. Mech. Anal. 190(1), 107–140 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  64. Vanderbauwhede, A., Iooss, G.: Center manifold theory in infinite dimensions. In: Dynamics reported: expositions in dynamical systems, Dynam. Report. Expositions Dynam. Systems (N.S.) 1, Berlin: Springer, 1992, pp. 125–163

  65. Zumbrun, K.: Multidimensional stability of planar viscous shock waves. In: Advances in the theory of shock waves, Progr. Nonlinear Differential Equations Appl., 47, Boston, MA: Birkhäuser Boston, 2001, pp. 307–516

  66. Zumbrun, K.: Stability of large-amplitude shock waves of compressible Navier–Stokes equations. In: Handbook of mathematical fluid dynamics. Vol. III, Amsterdam: North-Holland, 2004, pp. 311–533

  67. Zumbrun, K.: Planar stability criteria for viscous shock waves of systems with real viscosity. In: Hyperbolic systems of balance laws, Lecture Notes in Math., 1911, Berlin: Springer, 2007, pp. 229–326

  68. Zumbrun K.,: Stability of viscous detonations in the ZND limit. To appear, Arch. Ration. Mech. Anal. doi:10.1007/s00205-101-03426, 2010

  69. Zumbrun, K., Howard, P.: Pointwise semigroup methods and stability of viscous shock waves. Indiana Mathematics Journal 47, 741–871 (1998); Errata, Indiana Univ. Math. J. 51(4), 1017–1021 (2002)

  70. Zumbrun K., Serre D.: Viscous and inviscid stability of multidimensional planar shock fronts. Indiana Univ. Math. J. 48, 937–992 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Zumbrun.

Additional information

Communicated by P. Constantin

Research of B.T. was partially supported under NSF grant number DMS-0505780.

Research of K.Z. was partially supported under NSF grants no. DMS-0300487 and DMS-0801745.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Texier, B., Zumbrun, K. Transition to Longitudinal Instability of Detonation Waves is Generically Associated with Hopf Bifurcation to Time-Periodic Galloping Solutions. Commun. Math. Phys. 302, 1–51 (2011). https://doi.org/10.1007/s00220-010-1175-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1175-8

Keywords

Navigation