Skip to main content
Log in

Spectral Stability of Ideal-Gas Shock Layers

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Extending recent results in the isentropic case, we use a combination of asymptotic ODE estimates and numerical Evans-function computations to examine the spectral stability of shock-wave solutions of the compressible Navier–Stokes equations with ideal gas equation of state. Our main results are that, in appropriately rescaled coordinates, the Evans function associated with the linearized operator about the wave (i) converges in the large-amplitude limit to the Evans function for a limiting shock profile of the same equations, for which internal energy vanishes at one end state; and (ii) has no unstable (positive real part) zeros outside a uniform ball |λ| ≦ Λ. Thus, the rescaled eigenvalue ODE for the set of all shock waves, augmented with the (nonphysical) limiting case, form a compact family of boundary-value problems that can be conveniently investigated numerically. An extensive numerical Evans-function study yields one-dimensional spectral stability, independent of amplitude, for gas constant γ in [1.2, 3] and ratio ν/μ of heat conduction to viscosity coefficient within [0.2, 5] (γ ≈ 1.4, ν/μ ≈ 1.47 for air). Other values may be treated similarly but were not considered. The method of analysis extends also to the multi-dimensional case, a direction that we shall pursue in a future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander J., Gardner R., Jones C.: A topological invariant arising in the stability analysis of travelling waves. J. Reine Angew. Math. 410, 167–212 (1990)

    MathSciNet  MATH  Google Scholar 

  2. Alexander J.C., Sachs R.: Linear instability of solitary waves of a Boussinesq-type equation: a computer assisted computation. Nonlinear World 2(4), 471–507 (1995)

    MathSciNet  MATH  Google Scholar 

  3. Barker B., Humpherys J., Rudd K., Zumbrun K.: Stability of viscous shocks in isentropic gas dynamics. Comm. Math. Phys. 281(1), 231–249 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge Mathematical Library. Cambridge University Press, Cambridge, paperback edition, 1999

  5. Bridges T.J., Derks G., Gottwald G.: Stability and instability of solitary waves of the fifth-order KdV equation: a numerical framework. Phys. D 172(1–4), 190–216 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brin, L.Q.: Numerical Testing of the Stability of Viscous Shock Waves. Ph.D. thesis, Indiana University, Bloomington, 1998

  7. Brin L.Q.: Numerical testing of the stability of viscous shock waves. Math. Comp. 70(235), 1071–1088 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Brin, L.Q., Zumbrun, K.: Analytically varying eigenvectors and the stability of viscous shock waves. Mat. Contemp., 22, 19–32, 2002. Seventh Workshop on Partial Differential Equations, Part I (Rio de Janeiro, 2001)

  9. Brower W.: Theory, Tables, and Data for Compressible Flow. Taylor & Francis, London (1990)

    Google Scholar 

  10. Brower W.: A Primer in Fluid Mechanics: Dynamics of Flows in One Space Dimension. CRC Press, Boca Raton (1999)

    MATH  Google Scholar 

  11. Cirak F., Deiterding R., Mauch S.: Large-scale fluid–structure interaction simulation of viscoplastic and fracturing thin-shells subjected to shocks and detonations. Comput. Struct. 85(11–14), 1049–1065 (2007)

    Article  Google Scholar 

  12. Costanzino, N., Humpherys, J., Nguyen, T., Zumbrun, K.: Spectral stability of noncharacteristic boundary layers of isentropic Navier–Stokes equations. Preprint, 2007

  13. Cramer M.: Nonclassical dynamics of classical gases. In: Kluwick, A. (eds) Nonlinear Waves in Real Fluids, pp. 91–145. Springer, New York (1991)

    Chapter  Google Scholar 

  14. Evans J.W., Feroe J.A.: Traveling waves of infinitely many pulses in nerve equations. Math. Biosci. 37, 23–50 (1977)

    Article  MATH  Google Scholar 

  15. Freistühler H., Szmolyan P.: Spectral stability of small shock waves. Arch. Ration. Mech. Anal. 164(4), 287–309 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Freistuhler, H., Szmolyan, P.: Spectral stability of small-amplitude viscous shock waves in several space dimensions. Preprint, 2006

  17. Gardner R., Jones C.K.R.T.: A stability index for steady state solutions of boundary value problems for parabolic systems. J. Differ. Equ. 91(2), 181–203 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Gardner R.A., Jones C.K.R.T.: Traveling waves of a perturbed diffusion equation arising in a phase field model. Indiana Univ. Math. J. 39(4), 1197–1222 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gardner R.A., Zumbrun K.: The gap lemma and geometric criteria for instability of viscous shock profiles. Comm. Pure Appl. Math. 51(7), 797–855 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gesztesy F., Latushkin Y., Makarov K.A.: Evans functions, Jost functions, and Fredholm determinants. Arch. Ration. Mech. Anal. 186(3), 361–421 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gilbarg D.: The existence and limit behavior of the one-dimensional shock layer. Am. J. Math. 73, 256–274 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guès C.M.I.O., Métivier G., Williams M., Zumbrun K.: Navier–Stokes regularization of multidimensional Euler shocks. Ann. Sci. École Norm. Sup. (4) 39(1), 75–175 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Guès O., Métivier G., Williams M., Zumbrun K.: Nonclassical multidimensional viscous and inviscid shocks. Duke Math. J. 142(1), 1–110 (2008)

    MathSciNet  MATH  Google Scholar 

  24. Gues O., Métivier G., Williams M., Zumbrun K.: Viscous boundary value problems for symmetric systems with variable multiplicities. J. Differ. Equ. 244(2), 309–387 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Haller K., Ventikos Y., Poulikakos D., Monkewitz P.: Computational study of high-speed liquid droplet impact. J. Appl. Phys. 92, 2821 (2002)

    Article  ADS  Google Scholar 

  26. Hoover W.: Structure of a Shock-Wave Front in a Liquid. Phys. Rev. Lett. 42(23), 1531–1534 (1979)

    Article  ADS  Google Scholar 

  27. Humpherys, J., Lafitte, O., Zumbrun, K.: Stability of isentropic viscous shock profiles in the high-mach number limit. Preprint, 2007

  28. Humpherys, J., Lyng, G., Zumbrun, K.: Multidimensional spectral stability of large-amplitude Navier–Stokes shocks (in preparation)

  29. Humpherys J., Sandstede B., Zumbrun K.: Efficient computation of analytic bases in Evans function analysis of large systems. Numer. Math. 103(4), 631–642 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Humpherys J., Zumbrun K.: Spectral stability of small-amplitude shock profiles for dissipative symmetric hyperbolic-parabolic systems. Z. Angew. Math. Phys. 53(1), 20–34 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Humpherys J., Zumbrun K.: An efficient shooting algorithm for Evans function calculations in large systems. Phys. D 220(2), 116–126 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kato, T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer, Berlin, 1995. Reprint of the 1980 edition

  33. Liu V.: On the separation of gas mixtures by suction of the thermal-diffusion boundary layer. Q. J. Mech. Appl. Math. 12(1), 1–13 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  34. Loeb L.: Kinetic theory of gases. J. Am. Chem. Soc. 81(5), 1267–1267 (1959)

    Article  Google Scholar 

  35. Mascia C., Zumbrun K.: Pointwise Green function bounds for shock profiles of systems with real viscosity. Arch. Ration. Mech. Anal. 169(3), 177–263 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mascia C., Zumbrun K.: Stability of large-amplitude viscous shock profiles of hyperbolic-parabolic systems. Arch. Ration. Mech. Anal. 172(1), 93–131 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Matsumura A., Nishihara K.: On the stability of travelling wave solutions of a one-dimensional model system for compressible viscous gas. Jpn. J. Appl. Math. 2(1), 17–25 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  38. Métivier G., Zumbrun K.: Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems. Mem. Am. Math. Soc. 175(826), vi+107 (2005)

    MathSciNet  MATH  Google Scholar 

  39. Pego R.L.: Stable viscosities and shock profiles for systems of conservation laws. Trans. Am. Math. Soc. 282(2), 749–763 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  40. Pego R.L., Smereka P., Weinstein M.I.: Oscillatory instability of traveling waves for a KdV–Burgers equation. Phys. D 67(1–3), 45–65 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pego R.L., Weinstein M.I.: Eigenvalues, and instabilities of solitary waves. Philos. Trans. Roy. Soc. Lond. Ser. A 340(1656), 47–94 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Plaza, R., Zumbrun, K.: An Evans function approach to spectral stability of small-amplitude shock profiles. Discrete Contin. Dyn. Syst. 10(4), 885–924 (2004). Preprint, 2002

    Article  MathSciNet  MATH  Google Scholar 

  43. Rosenhead L.: A discussion on the first and second viscosities of fluids. Introduction. The second coefficient of viscosity: a brief review of fundamentals. Proc. R. Soc. Lond. Ser. A. 226, 1–6 (1954)

    Article  ADS  MathSciNet  Google Scholar 

  44. Serre, D.: Systems of Conservation Laws. 1. Cambridge University Press, Cambridge, 1999. Hyperbolicity, entropies, shock waves, Translated from the 1996 French original by I. N. Sneddon

  45. Serre, D.: Systems of Conservation Laws. 2. Cambridge University Press, Cambridge, 2000. Geometric structures, oscillations, and initial-boundary value problems, Translated from the 1996 French original by I. N. Sneddon

  46. Serre D., Zumbrun K.: Boundary layer stability in real vanishing viscosity limit. Comm. Math. Phys. 221(2), 267–292 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Shizuta Y., Kawashima S.: Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation. Hokkaido Math. J. 14(2), 249–275 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  48. Slemrod M.: Dynamic phase transitions in a van der Waals fluid. J. Differ. Equ. 52(1), 1–23 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Smoller J.: Shock Waves and Reaction-diffusion Equations, 2nd edn. Springer, New York (1994)

    Book  MATH  Google Scholar 

  50. Sychev V., Vasserman A., Kozlov A. et al.: The Thermodynamic Properties of Air [in Russian], Izd. Standartov, Moscow (1978)

    Google Scholar 

  51. Truesdell C.: The present status of the controversy regarding the bulk viscosity of fluids. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. (1934-1990) 226(1164), 59–65 (1954)

    Article  MATH  Google Scholar 

  52. White F., Corfield I.: Viscous Fluid Flow. McGraw-Hill, New York (1974)

    Google Scholar 

  53. Zumbrun, K.: Dynamical stability of phase transitions in the p-system with viscosity-capillarity. SIAM J. Appl. Math. 60(6), 1913–1924 (electronic), 2000

    Article  MathSciNet  MATH  Google Scholar 

  54. Zumbrun, K.: Stability of large-amplitude shock waves of compressible Navier–Stokes equations. Handbook of mathematical fluid dynamics, vol. III. North-Holland, Amsterdam, 311–533, 2004. With an appendix by Helge Kristian Jenssen and Gregory Lyng

  55. Zumbrun K., Howard P.: Pointwise semigroup methods and stability of viscous shock waves. Indiana Univ. Math. J. 47(3), 741–871 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Humpherys.

Additional information

Communicated by C.M. Dafermos

Rights and permissions

Reprints and permissions

About this article

Cite this article

Humpherys, J., Lyng, G. & Zumbrun, K. Spectral Stability of Ideal-Gas Shock Layers. Arch Rational Mech Anal 194, 1029–1079 (2009). https://doi.org/10.1007/s00205-008-0195-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-008-0195-4

Keywords

Navigation