Skip to main content
Log in

Stability of Isentropic Navier–Stokes Shocks in the High-Mach Number Limit

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

By a combination of asymptotic ODE estimates and numerical Evans function calculations, we establish stability of viscous shock solutions of the isentropic compressible Navier–Stokes equations with γ-law pressure (i) in the limit as Mach number M goes to infinity, for any γ ≥ 1 (proved analytically), and (ii) for M ≥ 2,500, \({\gamma\in [1,2.5]}\) or M ≥ 13,000, \({\gamma \in [2.5,3]}\) (demonstrated numerically). This builds on and completes earlier studies by Matsumura–Nishihara and Barker–Humpherys–Rudd–Zumbrun establishing stability for low and intermediate Mach numbers, respectively, indicating unconditional stability, independent of shock amplitude, of viscous shock waves for γ-law gas dynamics in the range \({\gamma \in [1,3]}\) . Other γ-values may be treated similarly, but have not been checked numerically. The main idea is to establish convergence of the Evans function in the high-Mach number limit to that of a pressureless, or “infinitely compressible”, gas with additional upstream boundary condition determined by a boundary-layer analysis. Recall that low-Mach number behavior is formally incompressible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander J., Gardner R., Jones C.: A topological invariant arising in the stability analysis of travelling waves. J. Reine Angew. Math. 410, 167–212 (1990)

    MATH  MathSciNet  Google Scholar 

  2. Barker B., Humpherys J., Rudd K., Zumbrun K.: Stability of viscous shocks in isentropic gas dynamics. Commun. Math. Phys. 281(1), 231–249 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Barmin A.A., Egorushkin S.A.: Stability of shock waves. Adv. Mech. 15(1–2), 3–37 (1992)

    MathSciNet  Google Scholar 

  4. Batchelor G.K.: An introduction to fluid dynamics. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  5. Bertozzi A.L., Brenner M.P.: Linear stability and transient growth in driven contact lines. Phys. Fluids 9(3), 530–539 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Bertozzi A.L., Münch A., Fanton X., Cazabat A.M.: Contact line stability and undercompressive shocks in driven thin film flow. Phys. Rev. Lett. 81(23), 5169–5172 (1998)

    Article  ADS  Google Scholar 

  7. Bianchini S., Bressan A.: Vanishing viscosity solutions of nonlinear hyperbolic systems. Ann. Math. (2) 161(1), 223–342 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bridges T.J., Derks G., Gottwald G.: Stability and instability of solitary waves of the fifth-order KdV equation: a numerical framework. Phys. D 172(1-4), 190–216 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Brin, L.Q.: Numerical testing of the stability of viscous shock waves. PhD thesis, Indiana University, Bloomington, 1998

  10. Brin L.Q.: Numerical testing of the stability of viscous shock waves. Math. Comp. 70(235), 1071–1088 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Brin, L.Q., Zumbrun, K.: Analytically varying eigenvectors and the stability of viscous shock waves. In: Seventh Workshop on Partial Differential Equations, Part I (Rio de Janeiro, 2001). Mat. Contemp. 22, 19–32, (2002).

  12. Freistühler H., Szmolyan P.: Spectral stability of small shock waves. Arch. Ration. Mech. Anal. 164(4), 287–309 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gardner R.A., Zumbrun K.: The gap lemma and geometric criteria for instability of viscous shock profiles. Comm. Pure Appl. Math. 51(7), 797–855 (1998)

    Article  MathSciNet  Google Scholar 

  14. Goodman J.: Nonlinear asymptotic stability of viscous shock profiles for conservation laws. Arch. Rational Mech. Anal. 95(4), 325–344 (1986)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Goodman, J.: Remarks on the stability of viscous shock waves. In: Viscous profiles and numerical methods for shock waves (Raleigh, NC, 1990), Philadelphia, PA: SIAM, 1991, pp. 66–72

  16. Grenier E., Rousset F.: Stability of one-dimensional boundary layers by using Green’s functions. Comm. Pure Appl. Math. 54(11), 1343–1385 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Guès C.M.I.O., Métivier G., Williams M., Zumbrun K.: Navier-Stokes regularization of multidimensional Euler shocks. Ann. Sci. École Norm. Sup. (4) 39(1), 75–175 (2006)

    MATH  Google Scholar 

  18. Hoff D.: The zero-Mach limit of compressible flows. Commun. Math. Phys. 192(3), 543–554 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Hoover W.G.: Structure of a shock-wave front in a liquid. Phys. Rev. Lett. 42(23), 1531–1534 (1979)

    Article  ADS  Google Scholar 

  20. Howard P., Raoofi M.: Pointwise asymptotic behavior of perturbed viscous shock profiles. Adv. Differ. Eqs. 11(9), 1031–1080 (2006)

    MATH  MathSciNet  Google Scholar 

  21. Howard P., Raoofi M., Zumbrun K.: Sharp pointwise bounds for perturbed viscous shock waves. J. Hyperbolic Differ. Eq. 3(2), 297–373 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Humpherys J., Sandstede B., Zumbrun K.: Efficient computation of analytic bases in Evans function analysis of large systems. Numer. Math. 103(4), 631–642 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Humpherys J., Zumbrun K.: Spectral stability of small-amplitude shock profiles for dissipative symmetric hyperbolic-parabolic systems. Z. Angew. Math. Phys. 53(1), 20–34 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Humpherys J., Zumbrun K.: An efficient shooting algorithm for Evans function calculations in large systems. Phys. D 220(2), 116–126 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Il’in, A.M., Oleĭnik, O.A.: Behavior of solutions of the Cauchy problem for certain quasilinear equations for unbounded increase of the time. Dokl. Akad. Nauk SSSR 120, 25–28 (1958); (see also AMS Translations 42(2), 19–23 (1964).

  26. Kato, T.: Perturbation theory for linear operators. Classics in Mathematics. Berlin: Springer-Verlag, 1995, reprint of the 1980 edition

  27. Klainerman S., Majda A.: Compressible and incompressible fluids. Comm. Pure Appl. Math. 35(5), 629–651 (1982)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Kreiss, G., Liefvendahl, M.: Numerical investigation of examples of unstable viscous shock waves. In: Hyperbolic problems: theory, numerics, applications, Vol. I, II (Magdeburg, 2000), Volume 141 of Internat. Ser. Numer. Math., Basel: Birkhäuser, 2001 pp. 613–621

  29. Kreiss H.-O., Lorenz J., Naughton M.J.: Convergence of the solutions of the compressible to the solutions of the incompressible Navier-Stokes equations. Adv. in Appl. Math. 12(2), 187–214 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  30. Liu T.-P.: Nonlinear stability of shock waves for viscous conservation laws. Mem. Amer. Math. Soc. 56(328), v–108 (1985)

    Google Scholar 

  31. Liu T.-P.: Pointwise convergence to shock waves for viscous conservation laws. Comm. Pure Appl. Math. 50(11), 1113–1182 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  32. Liu T.-P., Yu S.-H.: Boltzmann equation: micro-macro decompositions and positivity of shock profiles. Commun. Math. Phys. 246(1), 133–179 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. Mascia C., Zumbrun K.: Pointwise Green function bounds for shock profiles of systems with real viscosity. Arch. Ration. Mech. Anal. 169(3), 177–263 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. Mascia C., Zumbrun K.: Stability of large-amplitude viscous shock profiles of hyperbolic-parabolic systems. Arch. Ration. Mech. Anal. 172(1), 93–131 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  35. Mascia C., Zumbrun K.: Stability of small-amplitude shock profiles of symmetric hyperbolic-parabolic systems. Comm. Pure Appl. Math. 57(7), 841–876 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  36. Matsumura A., Nishihara K.: On the stability of travelling wave solutions of a one-dimensional model system for compressible viscous gas. Japan J. Appl. Math. 2(1), 17–25 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  37. Métivier G., Zumbrun K.: Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems. Mem. Amer. Math. Soc. 175(826), vi+107 (2005)

    Google Scholar 

  38. Pego R.L., Weinstein M.I.: Eigenvalues, and instabilities of solitary waves. Philos. Trans. Roy. Soc. London Ser. A 340(1656), 47–94 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. Plaza R., Zumbrun K.: An Evans function approach to spectral stability of small-amplitude shock profiles. Discrete Contin. Dyn. Syst. 10(4), 885–924 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  40. Raoofi M.: L p asymptotic behavior of perturbed viscous shock profiles. J. Hyperbolic Differ. Equ. 2(3), 595–644 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  41. Rousset F.: Viscous approximation of strong shocks of systems of conservation laws. SIAM J. Math. Anal. 35(2), 492–519 (2003) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  42. Serre, D.: Systems of conservation laws. 1. Cambridge: Cambridge University Press, 1999, translated from the 1996 French original by I. N. Sneddon

  43. Serre, D.: Systems of conservation laws. 2. Cambridge: Cambridge University Press, 2000. translated from the 1996 French original by I. N. Sneddon

  44. Serre D., Zumbrun K.: Boundary layer stability in real vanishing viscosity limit. Commun. Math. Phys. 221(2), 267–292 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  45. Smoller J.: Shock waves and reaction-diffusion equations. 2nd ed. Springer-Verlag, New York (1994)

    MATH  Google Scholar 

  46. Szepessy A., Xin Z.P.: Nonlinear stability of viscous shock waves. Arch. Ration. Mech. Anal. 122(1), 53–103 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  47. Zumbrun K.: Refined wave-tracking and nonlinear stability of viscous Lax shocks. Meth. Appl. Anal. 7(4), 747–768 (2000)

    MATH  MathSciNet  Google Scholar 

  48. Zumbrun, K.: Multidimensional stability of planar viscous shock waves. In: Advances in the theory of shock waves, Volume 47 of Progr. Nonlinear Differential Equations Appl. Boston, MA: Birkhäuser Boston, 2001, pp. 307–516

  49. Zumbrun, K.: Stability of large-amplitude shock waves of compressible Navier-Stokes equations. In: Handbook of mathematical fluid dynamics. Vol. III, North-Holland, Amsterdam, 2004, pp. 311–533 with an appendix by Helge Kristian Jenssen and Gregory Lyng

  50. Zumbrun K., Howard P.: Pointwise semigroup methods and stability of viscous shock waves. Indiana Univ. Math. J. 47(3), 741–871 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Zumbrun.

Additional information

Communicated by P. Constantin

This work was supported in part by the National Science Foundation award numbers DMS-0607721 and DMS-0300487.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Humpherys, J., Lafitte, O. & Zumbrun, K. Stability of Isentropic Navier–Stokes Shocks in the High-Mach Number Limit. Commun. Math. Phys. 293, 1–36 (2010). https://doi.org/10.1007/s00220-009-0885-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0885-2

Keywords

Navigation