Skip to main content
Log in

Asymptotic Stability of the Relativistic Boltzmann Equation for the Soft Potentials

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper it is shown that unique solutions to the relativistic Boltzmann equation exist for all time and decay with any polynomial rate towards their steady state relativistic Maxwellian provided that the initial data starts out sufficiently close in \({L^\infty_\ell}\). If the initial data are continuous then so is the corresponding solution. We work in the case of a spatially periodic box. Conditions on the collision kernel are generic in the sense of Dudyński and Ekiel-Jeżewska (Commun Math Phys 115(4):607–629, 1985); this resolves the open question of global existence for the soft potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Andréasson H.: Regularity of the gain term and strong L 1 convergence to equilibrium for the relativistic Boltzmann equation. SIAM J. Math. Anal. 27(5), 1386–1405 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Andréasson H., Calogero S., Illner R.: On blowup for gain-term-only classical and relativistic Boltzmann equations. Math. Meth. Appl. Sci. 27(18), 2231–2240 (2004)

    Article  MATH  Google Scholar 

  3. Bichteler K.: On the Cauchy problem of the relativistic Boltzmann equation. Commun. Math. Phys. 4, 352–364 (1967)

    Article  MathSciNet  ADS  Google Scholar 

  4. Boisseau B., van Leeuwen W.A.: Relativistic Boltzmann theory in D + 1 spacetime dimensions. Ann. Physics 195(2), 376–419 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Caflisch R.E.: The Boltzmann equation with a soft potential. I. Linear, spatially- homogeneous. Commun. Math. Phys. 74(1), 71–95 (1980)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Caflisch R.E.: The Boltzmann equation with a soft potential. II. Nonlinear, spatially-periodic. Commun. Math. Phys. 74(2), 97–109 (1980)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Calogero S.: The Newtonian limit of the relativistic Boltzmann equation. J. Math. Phys. 45(11), 4042–4052 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Cercignani C., Medeiros Kremer G.: The relativistic Boltzmann equation: theory and applications. Progress in Mathematical Physics, Vol. 22. Birkhäuser Verlag, Basel (2002)

    Google Scholar 

  9. de Groot S.R., van Leeuwen W.A., van Weert Ch.G.: Relativistic kinetic theory. North-Holland Publishing Co., Amsterdam (1980)

    Google Scholar 

  10. Desvillettes L., Villani C.: On the trend to global equilibrium for spatially inhomoge- neous kinetic systems: the Boltzmann equation. Invent. Math. 159(2), 245–316 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Dijkstra J.J., van Leeuwen W.A.: Mathematical aspects of relativistic kinetic theory. Phys. A 90(3–4), 450–486 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  12. DiPerna R.J., Lions P.-L.: Global weak solutions of Vlasov-Maxwell systems. Comm. Pure Appl. Math. 42(6), 729–757 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  13. DiPerna R.J., Lions P.-L.: On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. of Math. (2) 130(2), 321–366 (1989)

    Article  MathSciNet  Google Scholar 

  14. Dudyński M.: On the linearized relativistic Boltzmann equation. II. Existence of hydro-dynamics. J. Stat. Phys. 57(1–2), 199–245 (1989)

    Article  MATH  ADS  Google Scholar 

  15. Dudyński M., Ekiel-Jeżewska M.L.: The relativistic Boltzmann equation - mathematical and physical aspects. J. Tech. Phys. 48, 39–47 (2007)

    Google Scholar 

  16. Dudyński M., Ekiel-Jeżewska M.L.: Causality of the linearized relativistic Boltzmann equation. Phys. Rev. Lett. 55(26), 2831–2834 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  17. Dudyński M., Ekiel-Jeżewska M.L.: Errata: Causality of the linearized relativistic Boltzmann equation. Investigación Oper. 6(1), 2228 (1985)

    Google Scholar 

  18. Dudyński M., Ekiel-Jeżewska M.L.: On the linearized relativistic Boltzmann equation. I. Existence of solutions. Commun. Math. Phys. 115(4), 607–629 (1985)

    Article  ADS  Google Scholar 

  19. Dudyński M., Ekiel-Jeżewska M.L.: Global existence proof for relativistic Boltzmann equation. J. Stat. Phys. 66(3–4), 991–1001 (1992)

    Article  MATH  ADS  Google Scholar 

  20. Glassey R.T., Strauss W.A.: Asymptotic stability of the relativistic Maxwellian via fourteen moments. Trans. Th. Stat. Phys. 24(4–5), 657–678 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  21. Glassey, R.T.: The Cauchy problem in kinetic theory. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), 1996

  22. Glassey R.T.: Global solutions to the Cauchy problem for the relativistic Boltzmann equation with near-vacuum data. Commun. Math. Phys. 264(3), 705–724 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Glassey R.T., Strauss W.A.: On the derivatives of the collision map of relativistic particles. Trans. Th. Stat. Phys. 20(1), 55–68 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  24. Glassey R.T., Strauss W.A.: Asymptotic stability of the relativistic Maxwellian. Publ. Res. Inst. Math. Sci. 29(2), 301–347 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  25. Gressman, P.T., Strain, R.M.: Global Strong Solutions of the Boltzmann Equation without Angular Cut-off. Preprint, available at http://arXiv.org/abs/0912.0888v1 [math.AP], 2009

  26. Gressman, P.T., Strain, R.M.: Global classical solutions of the Boltzmann equation with long-range interactions and soft potentials. Preprint, available at http://arXiv.org/abs/1002.3639v1 [math.AP], 2010

  27. Gressman P.T., Strain R.M.: Global classical solutions of the Boltzmann equation with long-range interactions. Proc. Nat. Acad. Sci. U. S. A. 107(13), 5744–5749 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  28. Guo Y.: The Landau equation in a periodic box. Commun. Math. Phys. 231(3), 391–434 (2002)

    Article  MATH  ADS  Google Scholar 

  29. Guo Y.: The Vlasov-Poisson-Boltzmann system near Maxwellians. Comm. Pure Appl. Math. 55(9), 1104–1135 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  30. Guo Y.: Classical solutions to the Boltzmann equation for molecules with an angular cutoff. Arch. Rat. Mech. Anal. 169(4), 305–353 (2003)

    Article  MATH  Google Scholar 

  31. Guo Y.: The Vlasov-Maxwell-Boltzmann system near Maxwellians. Invent. Math. 153(3), 593–630 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. Guo Y.: The Boltzmann equation in the whole space. Indiana Univ. Math. J. 53(4), 1081–1094 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  33. Guo Y.: Decay and continuity of Boltzmann equation in bounded domains. Arch. Rat. Mech. Anal. 197(3), 713–809 (2010)

    Article  Google Scholar 

  34. Guo Y., Strauss W.A.: Instability of periodic BGK equilibria. Comm. Pure Appl. Math. 48(8), 861–894 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  35. Ha S.-Y., Kim Y.D., Lee H., Noh S.E.: Asymptotic completeness for relativistic kinetic equations with short-range interaction forces. Meth. Appl. Anal. 14(3), 251–262 (2007)

    MATH  MathSciNet  Google Scholar 

  36. Hsiao L., Yu H.: Asymptotic stability of the relativistic Maxwellian. Math. Meth. Appl. Sci. 29(13), 1481–1499 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  37. Jiang Z.: On the relativistic Boltzmann equation. Acta Math. Sci. (English Ed.) 18(3), 348–360 (1998)

    MATH  MathSciNet  Google Scholar 

  38. Jiang Z.: On the Cauchy problem for the relativistic Boltzmann equation in a periodic box: global existence. Transport Theory Statist. Phys. 28(6), 617–628 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  39. Lebedev, N.N.: Special functions and their applications. New York: Dover Publications Inc., 1972, revised edition, translated from the Russian and edited by Richard A. Silverman, Unabridged and corrected republication

  40. Lichnerowicz A., Marrot R.: Propriétés statistiques des ensembles de particules en relativité restreinte. C. R. Acad. Sci. Paris 210, 759–761 (1940)

    MathSciNet  Google Scholar 

  41. Liu T.-P., Yu S.-H.: The Green’s function and large-time behavior of solutions for the one-dimensional Boltzmann equation. Comm. Pure Appl. Math. 57(12), 1543–1608 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  42. Liu T.-P., Yu S.-H.: Green’s function of Boltzmann equation, 3-D waves. Bull. Inst. Math. Acad. Sin. (N.S.) 1(1), 1–78 (2006)

    MATH  MathSciNet  Google Scholar 

  43. Liu T.-P., Yu S.-H.: Initial-boundary value problem for one-dimensional wave solutions of the Boltzmann equation. Comm. Pure Appl. Math. 60(3), 295–356 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  44. Mouhot, C., Villani, C.: On the Landau damping. http://arXiv.org/abs/0904.2760v1 [math.AP], 2009

  45. Poularikas, A.D. (ed.): The transforms and applications handbook. The Electrical Engineering Handbook Series, Boca Raton, FL: CRC Press, 1996

  46. Prudnikov, A.P., Brychkov, Yu.A., Marichev, O.I.: Integrals and series. Vol. 2, New York: Gordon & Breach Science Publishers, 1988, translated from the Russian by N. M. Queen

  47. Rein G.: Global weak solutions to the relativistic Vlasov-Maxwell system revisited. Commun. Math. Sci. 2(2), 145–158 (2004)

    MATH  MathSciNet  Google Scholar 

  48. Stewart J.M.: Non-equilibrium relativistic kinetic theory. Springer-Verlag, Berlin, New York (1971)

    Google Scholar 

  49. Strain R.M.: Global Newtonian limit for the relativistic Boltzmann equation near vacuum. SIAM J. Math. Anal. 42(4), 1568–1601 (2010)

    Article  Google Scholar 

  50. Strain, R.M.: An energy method in collisional kinetic theory. Ph.D. dissertation, Division of Applied Mathematics, Brown University, May 2005

  51. Strain R.M., Guo Y.: Stability of the relativistic Maxwellian in a collisional plasma. Commun. Math. Phys. 251(2), 263–320 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  52. Strain R.M., Guo Y.: Almost exponential decay near Maxwellian. Comm. Part. Diff. Eqs. 31(1–3), 417–429 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  53. Strain R.M., Guo Y.: Exponential decay for soft potentials near Maxwellian. Arch. Rat. Mech. Anal. 187(2), 287–339 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  54. Synge, J.L.: The relativistic gas. Amsterdam: North-Holland Publishing Company, 1957

  55. Ukai S., Asano K.: On the Cauchy problem of the Boltzmann equation with a soft potential. Publ. Res. Inst. Math. Sci. 18(2), 477–519 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  56. Vidav I.: Spectra of perturbed semigroups with applications to transport theory. J. Math. Anal. Appl. 30, 264–279 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  57. Wennberg B.: The geometry of binary collisions and generalized Radon transforms. Arch. Rat. Mech. Anal. 139(3), 291–302 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Strain.

Additional information

Communicated by H. Spohn

The authors research was partially supported by the NSF grant DMS-0901463.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strain, R.M. Asymptotic Stability of the Relativistic Boltzmann Equation for the Soft Potentials. Commun. Math. Phys. 300, 529–597 (2010). https://doi.org/10.1007/s00220-010-1129-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1129-1

Keywords

Navigation