Skip to main content
Log in

On the linearized relativistic Boltzmann equation. II. Existence of hydrodynamics

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Solutions are analyzed of the linearized relativistic Boltzmann equation for initial data fromL 2(r, p) in long-time and/or small-mean-free-path limits. In both limits solutions of this equation converge to approximate ones constructed with solutions of the set of differential equations called the equations of relativistic hydrodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Eckart, The thermodynamics of irreversible processes III. Relativistic theory of the simple fluid,Phys. Rev. 58:919 (1940).

    Google Scholar 

  2. L. D. Landau and E. M. Lifschitz,Fluid Mechanics (Pergamon Press, Oxford, 1959).

    Google Scholar 

  3. W. Israel, Relativistic kinetic theory of simple gas,J. Math. Phys. 4:1163 (1963).

    Google Scholar 

  4. W. Israel and J. M. Stewart, Thermodynamics of nonstationary and transient effects in a relativistic gas,Phys. Lett. 58A:213 (1976); Transient relativistic thermodynamics and kinetic theory,Ann. Phys. (NY)118:341 (1979); On transient relativistic thermodynamics and kinetic theory,Proc. R. Soc. Lond. A 365:43 (1979).

    Google Scholar 

  5. I. Shih Liu, I. Müller, and T. Ruggiri, Relativistic thermodynamics of gases,Ann. Phys. (NY)169:191 (1981).

    Google Scholar 

  6. N. G. van Kampen, Chapman-Enskog as an application of the method for eliminating fast variables,J. Stat. Phys. 46:706 (1987).

    Google Scholar 

  7. U. Hainz, Kinetic theory for plasma with nonabelian interactions,Phys. Rev. Lett. 51:351 (1983); D. D. Holm and B. A. Kuperschmidt, Relativistic chromodynamics and Yang-Mills Vlasov plasma,Phys. Lett. 105A:225 (1984); K. Kajanite, Hydrodynamics and approach to equilibrium in quark-gluon plasma,Nucl. Phys. A 418:41c (1984); G. Baym, inQuark Matter, K. Kajanite, ed. (Lecture Notes in Physics, Vol. 221; Springer-Verlag, Berlin, 1985).

    Google Scholar 

  8. D. Mihalas and B. W. Mihalas,Foundation of Radiation Hydrodynamics (Oxford University Press, 1984).

  9. J. L. Synge,The Relativistic Gas (North-Holland, Amsterdam, 1957).

    Google Scholar 

  10. S. R. de Groot, W. A. van Leeuven, and Ch. G. van Weert,Non-Equilibrium Relativistic Kinetic Theory—Principles and Applications (North-Holland, Amsterdam, 1980).

    Google Scholar 

  11. H. Grad, Asymptotic theory of the Boltzmann equation,Phys. Fluids 6:147 (1963); Asymptotic equivalence of the Navier-Stakes and non-linear Boltzmann equations,Proc. Symp. Appl. Math. Am. Math. Soc. 17:154 (1965).

    Google Scholar 

  12. R. S. Ellis and M. A. Pinsky, The first and the second fluid approximations to the linearized Boltzmann equations,J. Math. Pures Appl. 54:125 (1976).

    Google Scholar 

  13. T. Nishida and L. Imai, Global solutions to the initial value problem for the nonlinear Boltzmann equation,Publ. IMS Kyoto 12:228 (1976).

    Google Scholar 

  14. T. Nishida, Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equations,Commun. Math. Phys. 61:119 (1978).

    Google Scholar 

  15. M. Klaus, The linear Boltzmann operator—Spectral properties and short-wavelength limit,Helv. Phys. Acta 28:99 (1975).

    Google Scholar 

  16. M. Dudyński and M. L. Ekiel-Jeźewska, On the linearized relativistic Boltzmann equation. I. Existence of solution,Commun. Math. Phys. 115:607 (1988).

    Google Scholar 

  17. F. Jüter,Ann. Phys. (Leipzig)34:856 (1911);35:145 (1911).

    Google Scholar 

  18. M. Abramovitz and I. A. Stegun,Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (Dover, New York, 1965).

    Google Scholar 

  19. M. Schechter, On the essential spectrum of an arbitrary operator,Math. Anal. Appl. 13:205 (1966).

    Google Scholar 

  20. T. Kato,Perturbation Theory for Linear Operators (Springer, Berlin, 1966).

    Google Scholar 

  21. M. Reed and B. Simon,Methods of Modern Mathematical Physics. IV. Analysis of Operators (Academic Press, New York, 1978).

    Google Scholar 

  22. L. Schwartz,Analyse Mathematique (Hermann, Paris, 1967).

    Google Scholar 

  23. M. Dudyński, On the Boltzmann-Lorentz model for particles with spin. III. The Grad method of moments,Physica A 52:254 (1988).

    Google Scholar 

  24. M. Dudyński and M. L. Ekiel-Jeźewska, Relativistic Boltzmann equation—Mathematical and physical aspects, inRelativistic Fluid Dynamics (Lecture Notes in Physics, in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dudyński, M. On the linearized relativistic Boltzmann equation. II. Existence of hydrodynamics. J Stat Phys 57, 199–245 (1989). https://doi.org/10.1007/BF01023641

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01023641

Key words

Navigation