Skip to main content
Log in

Long-Time Stability of Multi-Dimensional Noncharacteristic Viscous Boundary Layers

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We establish long-time stability of multi-dimensional noncharacteristic boundary layers of a class of hyperbolic–parabolic systems including the compressible Navier–Stokes equations with inflow [outflow] boundary conditions, under the assumption of strong spectral, or uniform Evans, stability. Evans stability has been verified for small-amplitude layers by Guès, Métivier, Williams, and Zumbrun. For large-amplitude layers, it may be efficiently checked numerically, as done in the one-dimensional case by Costanzino, Humpherys, Nguyen, and Zumbrun.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander J., Gardner R., Jones C.: A topological invariant arising in the stability analysis of travelling waves. J. Reine Angew. Math. 410, 167–212 (1990)

    MATH  MathSciNet  Google Scholar 

  2. Barker B., Humpherys J., Rudd K., Zumbrun K.: Stability of viscous shocks in isentropic gas dynamics. Commun. Math. Phys. 281, 231–249 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Braslow, A.L.: A history of suction-type laminar-flow control with emphasis on flight research. NSA History Division, Monographs in aerospace history, number 13, Washington, DC: NASA, 1999

  4. Bridges T.J., Derks G., Gottwald G.: Stability and instability of solitary waves of the fifth- order KdV equation: a numerical framework. Phys. D 172(1–4), 190–216 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brin, L.Q.: Numerical testing of the stability of viscous shock waves. PhD thesis, Indiana University, Bloomington, 1998

  6. Brin L.Q.: Numerical testing of the stability of viscous shock waves. Math. Comp. 70(235), 1071–1088 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Brin L.Q., Zumbrun K.: Analytically varying eigenvectors and the stability of viscous shock waves. Mat. Contemp. 22, 19–32 (2002)

    MATH  MathSciNet  Google Scholar 

  8. Costanzino N., Humpherys J., Nguyen T., Zumbrun K.: Spectral stability of noncharacteristic boundary layers of isentropic Navier–Stokes equations. Arch. Ration. Mech. Anal. 192, 537–587 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gardner R.A., Zumbrun K.: The gap lemma and geometric criteria for instability of viscous shock profiles. Comm. Pure Appl. Math. 51(7), 797–855 (1998)

    Article  MathSciNet  Google Scholar 

  10. Grenier E., Rousset F.: Stability of one dimensional boundary layers by using Green’s functions. Comm. Pure Appl. Math. 54, 1343–1385 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Guès O., Métivier G., Williams M., Zumbrun K.: Multidimensional viscous shocks I: degenerate symmetrizers and long time stability. J. Amer. Math. Soc. 18(1), 61–120 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Guès, O., Métivier, G., Williams, M., Zumbrun, K.: Existence and stability of noncharacteristic boundary-layers for compressible Navier-Stokes and viscous MHD equations. Arch. Ration. Mech. Anal. http://arxiv.org/abs/0805.3333v1[math.AP]

  13. Guès O., Métivier G., Williams M., Zumbrun K.: Viscous boundary value problems for symmetric systems with variable multiplicities. J. Differ. Equ. 244, 309–387 (2008)

    Article  MATH  Google Scholar 

  14. Howard P., Zumbrun K.: Stability of undercompressive viscous shock waves. J. Differ. Equ. 225(1), 308–360 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Humpherys J., Lafitte O., Zumbrun K.: Stability of isentropic Navier-Stokes shocks in the high-Mach number limit. Commun. Math. Phys. 293(1), 1–36 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Humpherys J., Lyng G., Zumbrun K.: Spectral stability of ideal-gas shock layers. Arch. Ration. Mech. Anal. 194(3), 1029–1079 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Humpherys, J., Lyng, G., Zumbrun, K.: Multidimensional spectral stability of large-amplitude Navier-Stokes shocks. In preparation

  18. Hoff D., Zumbrun K.: Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow. Indiana Univ. Math. J. 44(2), 603–676 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hoff D., Zumbrun K.: Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves. Z. Angew. Math. Phys. 48(4), 597–614 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Humpherys J., Zumbrun K.: An efficient shooting algorithm for evans function calculations in large systems. Physica D 220(2), 116–126 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Kagei Y., Kawashima S.: Stability of planar stationary solutions to the compressible Navier-Stokes equations in the half space. Commun. Math. Phys. 266, 401–430 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Kawashima S., Nishibata S., Zhu P.: Asymptotic stability of the stationary solution to the compressible Navier-Stokes equations in the half space. Commun. Math. Phys. 240(3), 483–500 (2003)

    MATH  MathSciNet  ADS  Google Scholar 

  23. Kawashima S., Shizuta Y.: Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation. Hokkaido Math. J. 14(2), 249–275 (1985)

    MATH  MathSciNet  Google Scholar 

  24. Kwon B., Zumbrun K.: Asymptotic behavior of multidimensional scalar relaxation shocks. J. Hyperbolic Differ. Equ. 6(4), 663–708 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Mascia C., Zumbrun K.: Pointwise Green function bounds for shock profiles of systems with real viscosity. Arch. Ration. Mech. Anal. 169(3), 177–263 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Mascia C., Zumbrun K.: Stability of large-amplitude viscous shock profiles of hyperbolic-parabolic systems. Arch. Ration. Mech. Anal. 172(1), 93–131 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Matsumura A., Nishihara K.: Large-time behaviors of solutions to an inflow problem in the half space for a one-dimensional system of compressible viscous gas. Commun. Math. Phys. 222(3), 449–474 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Métivier, G., Zumbrun, K.: Viscous Boundary Layers for Noncharacteristic Nonlinear Hyperbolic Problems. Memoirs AMS 826, Providence, RI: Amer. Math. Soc., 2005

  29. Nguyen T., Zumbrun K.: Long-time stability of large-amplitude noncharacteristic boundary layers for hyperbolic-parabolic systems. J. Math. Pures Appl. 92(6), 547–598 (2009)

    MATH  MathSciNet  Google Scholar 

  30. Pego R.L., Weinstein M.I.: Eigenvalues, and instabilities of solitary waves. Philos. Trans. Roy. Soc. London Ser. A 340(1656), 47–94 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Raoofi M., Zumbrun K.: Stability of undercompressive viscous shock profiles of hyperbolic-parabolic systems. J. Differ. Equ. 246(4), 1539–1567 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  32. Rousset F.: Inviscid boundary conditions and stability of viscous boundary layers. Asymptot. Anal. 26(3–4), 285–306 (2001)

    MATH  MathSciNet  Google Scholar 

  33. Rousset F.: Stability of small amplitude boundary layers for mixed hyperbolic-parabolic systems. Trans. Amer. Math. Soc. 355(7), 2991–3008 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. Schlichting, H.: Boundary layer theory. Translated by J. Kestin. 4th ed. McGraw-Hill Series in Mechanical Engineering. New York: McGraw-Hill Book Co., Inc., 1960

  35. Serre D., Zumbrun K.: Boundary layer stability in real vanishing-viscosity limit. Commun. Math. Phys. 221(2), 267–292 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. Yarahmadian S., Zumbrun K.: Pointwise green function bounds and long-time stability of large-amplitude noncharacteristic boundary layers. SIAM J. Math. Anal. 40(6), 2328–2350 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  37. Zumbrun, K.: Multidimensional stability of planar viscous shock waves. In: Advances in the theory of shock waves. Volume 47 of Progr. Nonlinear Differential Equations Appl., Boston, MA: Birkhäuser Boston, 2001, pp. 307–516

  38. Zumbrun, K.: Stability of large-amplitude shock waves of compressible Navier-Stokes equations. In: Handbook of mathematical fluid dynamics. Vol. III, Amsterdam: North-Holland, 2004, pp. 311–533 (with an appendix by Helge Kristian Jenssen and Gregory Lyng)

  39. Zumbrun, K.: Planar stability criteria for viscous shock waves of systems with real viscosity. In: Hyperbolic systems of balance laws. Volume 1911 of Lecture Notes in Math., Berlin: Springer, 2007, pp. 229–326

  40. Zumbrun K., Howard P.: Pointwise semigroup methods and stability of viscous shock waves. Indiana Univ. Math. J. 47(3), 741–871 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Zumbrun.

Additional information

Communicated by P. Constantin

This work was supported in part by the National Science Foundation award number DMS-0300487.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, T., Zumbrun, K. Long-Time Stability of Multi-Dimensional Noncharacteristic Viscous Boundary Layers. Commun. Math. Phys. 299, 1–44 (2010). https://doi.org/10.1007/s00220-010-1095-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1095-7

Keywords

Navigation