Skip to main content
Log in

Spectra of Sol-Manifolds: Arithmetic and Quantum Monodromy

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The spectral problem of three-dimensional manifolds M 3 A admitting Sol-geometry in Thurston's sense is investigated. Topologically M 3 A are torus bundles over a circle with a unimodular hyperbolic gluing map A. The eigenfunctions of the corresponding Laplace-Beltrami operators are described in terms of modified Mathieu functions. It is shown that the multiplicities of the eigenvalues are the same for generic values of the parameters in the metric and are directly related to the number of representations of an integer by a given indefinite binary quadratic form. As a result the spectral statistics is shown to disagree with the Berry-Tabor conjecture. The topological nature of the monodromy for both classical and quantum systems on Sol-manifolds is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah, M.F., Donnelly, H., Singer, I.M.: Eta invariants, signature defects of cusps and values of L-functions. Ann. Math. 118, 131–177 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bernays, P.: Über die Darstellung von positiven, ganzen Zahlen durch die primitiven, binären quadratischen Formen einer nicht-quadratischen Diskriminante. Dissertation Göttingen, 1912

  3. Berry, M.V., Tabor, M.: Level clustering in the regular spectrum. Proc. Roy. Soc. London A 356, 375–394 (1977)

    Article  ADS  MATH  Google Scholar 

  4. Bohigas, O., Giannoni, M.-J., Schmidt, C.: Characterization of chaotic quantum spectra and universality of level fluctuation laws. Phys. Rev. Lett. 52, 1–4 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bolsinov, A.V., Taimanov, I.A.: Integrable geodesic flows with positive topological entropy. Invent. Math. 140, 639–650 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Brezin, J.: Harmonic analysis on compact solvmanifolds. LNM 602, New York: Springer-Verlag, 1977

  7. Butler, L.: Toda lattices and positive-entropy integrable systems. Invent. Math. 158, 515–549 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Cushman, R., Duistermaat, J.J.: The quantum spherical pendulum. Bull. Amer. Math. Soc. (N.S.) 19, 475–479 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  9. Duistermaat, J.J.: On global action-angle coordinates. Comm. Pure Appl. Math. 33, 687–706 (1980)

    MATH  MathSciNet  Google Scholar 

  10. Duistermaat, J.J., Guillemin, V.W.: The spectrum of positive elliptic operators and periodic bicharacteristics. Invent. Math. 29(1), 39–79 (1975)

    Article  MathSciNet  Google Scholar 

  11. Gilkey, P.: Spectral geometry of a Riemannian manifold. J. Diff. Geom. 10(4), 601–618 (1975)

    MathSciNet  Google Scholar 

  12. Guillemin, V., Uribe, A.: Monodromy in the quantum spherical pendulum. Commun. Math. Phys. 122, 563–574 (1989)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Hirzebruch, F.: Hilbert modular surfaces. L'Enseign. Math. 19 (1973), 183–281

    MATH  MathSciNet  Google Scholar 

  14. Hooley, C.: On the intervals between numbers that are sums of two squares. Acta Math. 127, 279–297 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  15. Keng, H.L.: Introduction to Number Theory. Berlin-Heidelberg-New York: Springer-Verlag, 1982

  16. Jager, L.: Fonctions de Mathieu et fonctions propres de l'oscillateur relativiste. Ann. Fac. Sci. Toulouse Math. Serie 6, 7, 465–495 (1998)

    Google Scholar 

  17. Komarov, I.V., Ponomarev, L.I., Slavyanov, S.Yu.: Spheroidal and Coulomb spheroidal functions (Russian). Moscow: ``Nauka'', 1975, pp 320

  18. Komarov, I.V., Tsiganov, A.B.: Quantum two-particle periodic Toda lattice (Russian). Vestnik LGU, 4(2), 69–71 (1988)

    Google Scholar 

  19. Jakobson, D., Nadirashvili, N., Toth, J.: Geometric properties of eigenfunctions. Russ. Math. Surv. 56, 1085–1105 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Landau, E.: Elementary Number Theory. New York: Chelsea, 1958

  21. LeVeque, W.J.: Fundamentals of Number Theory. New York: Dover Publications, 1996

  22. Marklof, J.: Spectral form factors of rectangle billiards. Commun. Math. Phys. 199, 169–202 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Petridis, Y.N., Toth, J.A.: The remainder in Weyl's law for Heisenberg manifolds. J. Differ. Geom. 60, 455–483 (2002)

    MATH  MathSciNet  Google Scholar 

  24. Sarnak, P.: Class numbers of indefinite binary quadratic forms. J. Number Theory 15, 229–247 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  25. Sarnak, P.: Values at integers of binary quadratic forms. CMS Conf. Proc. 21, Providence, RI: Amer. Math. Soc., 1997, pp. 181–203

  26. Sarnak, P.: Private communication. (June 2003)

  27. Scott, P.: The geometries of 3-manifolds. Bull. London Math. Soc. 15, 401–487 (1983)

    MATH  MathSciNet  Google Scholar 

  28. Taimanov, I.A.: Topological obstructions to integrability of geodesic flows on non-simply-connected manifolds. Math. USSR Izv. 30, 403–409 (1988)

    Article  MathSciNet  Google Scholar 

  29. Thurston, W.P.: Hyperbolic geometry and 3-manifolds. London Math. Soc. Lecture Note Ser., 48, Cambridge: Cambridge Univ. Press, 1982

  30. Vu Ngoc S.: Quantum monodromy in integrable systems. Commun. Math. Phys. 203(2), 465–479 (1999)

    Google Scholar 

  31. Waalkens, H., Dullin, H.R.: Quantum monodromy in prolate ellipsoidal billiards. Ann. Phys. 295, 81–112 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Weyl, H.: Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen. Math. Ann. 141, 441–479 (1912)

    Article  MathSciNet  Google Scholar 

  33. Whittaker, E.T., Watson, G.N.: A Course in Modern Analysis, 4th ed., Cambridge: Cambridge University Press, 1990

  34. Zwillinger, D.: Handbook of Differential Equations, 3rd ed. Boston, MA: Academic Press, 1997

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.V. Bolsinov.

Additional information

Communicated by L. Takhtajan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolsinov, A., Dullin, H. & Veselov, A. Spectra of Sol-Manifolds: Arithmetic and Quantum Monodromy. Commun. Math. Phys. 264, 583–611 (2006). https://doi.org/10.1007/s00220-006-1543-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-1543-6

Keywords

Navigation