Skip to main content
Log in

Toda lattices and positive-entropy integrable systems

  • Published:
Inventiones mathematicae Aims and scope

Abstract

This paper studies completely integrable hamiltonian systems on T*Σ where Σ is a \(\mathbb{T}^{n+1}\) bundle over \(\mathbb{T}^n\) with an ℝ-split, free abelian monodromy group. For each periodic Toda lattice there is an integrable hamiltonian system on T*Σ with positive topological entropy. Bolsinov and Taimanov’s example of an integrable geodesic flow with positive topological entropy fits into this general construction with the A(1)1 Toda lattice. Topological entropy is used to show that the flows associated to non-dual Toda lattices are typically topologically non-conjugate via an energy-preserving homeomorphism. The remaining cases are approached via the homology spectrum. An energy-preserving conjugacy implies the congruence of two rational quadratic forms over the unit group of a number field F. When F/ℚ is normal a classification of flows is obtained. In degree 3, this results from a well-known result of Gelfond; in higher degrees, the result is conditional on the conjecture that a rationally independent set of logarithms of algebraic numbers is algebraically independent over ℚ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, M.: On a trace functional for formal pseudo differential operators and the symplectic structure of the Korteweg-de Vries type equations. Invent. Math. 50, 219–248 (1978/79)

  2. Ax, J.: On Schanuel’s conjectures. Ann. Math. (2) 93, 252–268 (1971)

  3. Bogoyavlensky, O.I.: On perturbations of the periodic Toda lattice. Commun. Math. Phys. 51, 201–209 (1976)

    Article  MathSciNet  Google Scholar 

  4. Bolsinov, A.V., Iovanovich, B.: Integrable geodesic flows on homogeneous spaces. Mat. Sb. 192, 21–40 (2001); translation in Sb. Math. 192, 951–968 (2001)

    Article  MathSciNet  Google Scholar 

  5. Bolsinov, A.V., Taimanov, I.A.: Integrable geodesic flows with positive topological entropy. Invent. Math. 140, 639–650 (2000)

    Article  MathSciNet  Google Scholar 

  6. Bowen, R.: Entropy for group endomorphisms and homogeneous spaces. Trans. Am. Math. Soc. 153, 401–414 (1971)

    Article  MathSciNet  Google Scholar 

  7. Butler, L.: A new class of homogeneous manifolds with Liouville-integrable geodesic flows. C. R. Math. Acad. Sci., Soc. R. Can. 21, 127–131 (1999)

    MathSciNet  Google Scholar 

  8. Butler, L.: Integrable geodesic flows on n-step nilmanifolds. J. Geom. Phys. 36, 315–323 (2000)

    Article  MathSciNet  Google Scholar 

  9. Butler, L.: Integrable geodesic flows with wild first integrals: the case of two-step nilmanifolds. Ergodic Theory Dyn. Syst. 23, 771–797 (2003)

    Article  Google Scholar 

  10. Butler, L.: New examples of integrable geodesic flows. Asian J. Math. 4, 515–526 (2000)

    Article  MathSciNet  Google Scholar 

  11. Butler, L.: Invariant fibrations of geodesic flows. Submitted to Topology (2004)

  12. Butler, L.: Integrable hamiltonian flows with positive Lebesgue-measure entropy. Ergodic Theory Dyn. Syst. 23, 1671–1690 (2003)

    Article  Google Scholar 

  13. Coleman, R.F.: On a stronger version of the Schanuel-Ax theorem. Am. J. Math. 102, 595–624 (1980)

    Article  Google Scholar 

  14. Flaschka, H.: The Toda lattice. I. Existence of integrals. Phys. Rev. B (3) 9, 1924–1925 (1974)

  15. Gelfond, A.O.: Transcendental and algebraic numbers. Trans. Leo F. Boron. New York: Dover 1960

  16. Helgason, S.: Differential geometry, Lie groups, and symmetric spaces. Corrected reprint of the 1978 original. Grad. Stud. Math. 34. Providence, RI: AMS 2001

  17. Hénon, M.: Integrals of the Toda lattice. Phys. Rev. B (3) 9, 1921–1923 (1974)

  18. Higman, G.: The units of group-rings. Proc. Lond. Math. Soc. (2) 46, 231–248 (1940)

  19. Humphreys, J.E.: Introduction to Lie algebras and representation theory. Grad. Texts Math. 9. New York, Berlin: Springer 1978

  20. Jurdjevic, V.: Geometric control theory. Camb. Stud. Adv. Math. 52. Cambridge: Cambridge University Press 1997

  21. Kac, V.: Infinite-dimensional Lie algebras. Third edition. Cambridge: Cambridge University Press 1990

  22. Kostant, B.: The solution to a generalized Toda lattice and representation theory. Adv. Math. 34, 195–338 (1979)

    Article  MathSciNet  Google Scholar 

  23. Kozlov, V.V.: Topological obstacles to the integrability of natural mechanical systems. Dokl. Akad. Nauk SSSR 249, 1299–1302 (1979)

    MathSciNet  Google Scholar 

  24. Kozlov, V.V.: Symmetries, topology and resonances in Hamiltonian mechanics. Ergeb. Math. Grenzgeb. (3) 31. Berlin: Springer 1996

  25. Lang, S.: Introduction to transcendental numbers. Reading, MA, London, Don Mills, ON: Addison-Wesley Publishing Co. 1965

  26. Lax, P.: Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 21, 467–490 (1968)

    Article  MathSciNet  Google Scholar 

  27. Markus, L., Meyer, K.: Generic Hamiltonian dynamical systems are neither integrable nor ergodic. Mem. Am. Math. Soc. 144, 1974

  28. McQuillan, D.L.: Some results on algebraic independence. Arch. Math. (Basel) 45, 336–341 (1985)

    Article  MathSciNet  Google Scholar 

  29. Mollin, R.A.: Algebraic number theory. CRC Press Series on Discrete Mathematics and its Applications. Boca Raton, FL: Chapman & Hall/CRC 1999

  30. Moser, J.: Stable and random motions in dynamical systems. With special emphasis on celestial mechanics. Reprint of the 1973 original. Princeton, NJ: Princeton University Press 2001

  31. Paternain, G.P.: On the topology of manifolds with completely integrable geodesic flows. Ergodic Theory Dyn. Syst. 12, 109–121 (1992)

    Article  MathSciNet  Google Scholar 

  32. Paternain, G.P.: Multiplicity two actions and loop space homology. Ergodic Theory Dyn. Syst. 13, 143–151 (1993)

    MathSciNet  Google Scholar 

  33. Paternain, G.P.: On the topology of manifolds with completely integrable geodesic flows. II. J. Geom. Phys. 13, 289–298 (1994)

    Article  MathSciNet  Google Scholar 

  34. Reyman, A.G., Semenov-Tian-Shansky, A.: Group-Theoretical Methods in the Theory of Finite-Dimensional Integrable Systems. In: Dynamical systems. VII. Integrable systems, nonholonomic dynamical systems. Encyclopaedia of Mathematical Sciences 16. Berlin: Springer 1994

  35. Schwartzman, S.: Asymptotic cycles. Ann. Math. (2) 66, 270–284 (1957)

  36. Segal, D.: Polycyclic groups. Camb. Tracts Math. 82. Cambridge: Cambridge University Press 1983

  37. Sehgal, S.K.: Topics in group rings. Monographs and Textbooks in Pure and Applied Math. 50. New York: Marcel Dekker, Inc. 1978

  38. Symes, W.W.: Systems of Toda type, inverse spectral problems, and representation theory. Invent. Math. 59, 13–51 (1980)

    Article  MathSciNet  Google Scholar 

  39. Taimanov, I.A.: Topological obstructions to the integrability of geodesic flows on nonsimply connected manifolds. Izv. Akad. Nauk SSSR, Ser. Mat. 51, 429–435, 448 (1987)

    Google Scholar 

  40. Taimanov, I.A.: Topology of Riemannian manifolds with integrable geodesic flows. Trudy Mat. Inst. Steklov. 205 (Novye Rezult. v Teor. Topol. Klassif. Integr. Sistem), 150–163 (1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo T. Butler.

Additional information

Mathematics Subject Classification (2000)

58F17, 53D25, 37D40

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butler, L. Toda lattices and positive-entropy integrable systems. Invent. math. 158, 515–549 (2004). https://doi.org/10.1007/s00222-004-0380-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-004-0380-5

Keywords

Navigation