Skip to main content

Higher-Order Spectra, Equivariant Hodge–Deligne Polynomials, and Macdonald-Type Equations

  • Chapter
  • First Online:
Singularities and Computer Algebra

Abstract

We define notions of higher-order spectra of a complex quasi-projective manifold with an action of a finite group G and with a G-equivariant automorphism of finite order, some of their refinements and give Macdonald-type equations for them.

Dedicated to Gert-Martin Greuel on the occasion of his 70th birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atiyah, M., Segal, G.: On equivariant Euler characteristics. J. Geom. Phys. 6 (4), 671–677 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Batyrev, V.V., Dais, D.I.: Strong McKay correspondence, string-theoretic Hodge numbers and mirror symmetry. Topology 35 (4), 901–929 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bryan, J., Fulman, J.: Orbifold Euler characteristics and the number of commuting m-tuples in the symmetric groups. Ann. Comb. 2 (1), 1–6 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheah, J.: The cohomology of smooth nested Hilbert schemes of points. Ph.D. thesis, The University of Chicago (1994), 237 pp.

    Google Scholar 

  5. Denef, J., Loeser, F.: Geometry on arc spaces of algebraic varieties. In: European Congress of Mathematics (Barcelona, 2000). Progress in Mathematics 201, vol. I, pp. 327–348. Birkhäuser, Basel (2001)

    Google Scholar 

  6. Dimca, A., Lehrer, G.I.: Purity and equivariant weight polynomials. In: Algebraic Groups and Lie Groups. Australian Mathematical Society Lecture Series, vol. 9. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  7. Dixon, L., Harvey, J., Vafa, C., Witten, E.: Strings on orbifolds. I. Nucl. Phys. B 261, 678–686 (1985)

    Article  MathSciNet  Google Scholar 

  8. Dixon, L., Harvey, J., Vafa, C., Witten, E.: Strings on orbifolds. II. Nucl. Phys. B 274, 285–314 (1986)

    Article  MathSciNet  Google Scholar 

  9. Ebeling, W., Takahashi, A.: Mirror symmetry between orbifold curves and cusp singularities with group action. Int. Math. Res. Not. 2013 (10), 2240–2270 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Gusein-Zade, S.M., Luengo, I., Melle-Hernández, A.: A power structure over the Grothendieck ring of varieties. Math. Res. Lett. 11, 49–57 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gusein-Zade, S.M., Luengo, I., Melle-Hernández, A.: Integration over spaces of non-parametrized arcs and motivic versions of the monodromy zeta function. Proc. Steklov Inst. Math. 252, 63–73 (2006)

    Article  MATH  Google Scholar 

  12. Gusein-Zade, S.M., Luengo, I., Melle-Hernández, A.: Higher order generalized Euler characteristics and generating series. J. Geom. Phys. 95, 137–143 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gusein-Zade, S.M., Luengo, I., Melle-Hernández, A.: Equivariant versions of higher order orbifold Euler characteristics. Mosc. Math. J. 16 (4), 751–765 (2016)

    Google Scholar 

  14. Hirzebruch, F., Höfer, Th.: On the Euler number of an orbifold. Math. Ann. 286 (1–3), 255–260 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ito, Y., Reid, M.: The McKay correspondence for finite subgroups of \(\mathrm{SL}(3, \mathbb{C})\). In: Higher-Dimensional Complex Varieties (Trento, 1994), pp. 221–240. de Gruyter, Berlin (1996)

    Google Scholar 

  16. Knutson, D.: λ-Rings and the Representation Theory of the Symmetric Group. Lecture Notes in Mathematics, vol. 308. Springer, Berlin-New York (1973)

    Google Scholar 

  17. Macdonald, I.G.: The Poincaré polynomial of a symmetric product. Proc. Camb. Philos. Soc. 58, 563–568 (1962)

    Article  MATH  Google Scholar 

  18. Morrison, A., Shen, J.: Motivic classes of generalized Kummer schemes via relative power structures (2015). Preprint, arXiv: 1505.02989

    Google Scholar 

  19. Stapledon, A.: Representations on the cohomology of hypersurfaces and mirror symmetry. Adv. Math. 226 (6), 5268–5297 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Steenbrink, J.H.M.: Mixed Hodge structure on the vanishing cohomology. In: Real and Complex Singularities (Proceedings of the Ninth Nordic Summer School/NAVF Symposium in Mathematics, Oslo, 1976), pp. 525–563. Sijthoff and Noordhoff, Alphen aan den Rijn (1977)

    Google Scholar 

  21. Varchenko, A.N.: Asymptotic Hodge structure in the vanishing cohomology. Izv. Akad. Nauk SSSR Ser. Mat. 45 (3), 540–591 (1981). Translated in Mathematics of the USSR – Izvestiya, 18 (3), 469–512 (1982)

    Google Scholar 

  22. Wang, W., Zhou, J.: Orbifold Hodge numbers of wreath product orbifolds. J. Geom. Phys. 38, 152–169 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zaslow, E.: Topological orbifold models and quantum cohomology rings. Commun. Math. Phys. 156 (2), 301–331 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referee for useful comments. This work has been partially supported by DFG (Mercator fellowship, Eb 102/8-1) and RFBR-16-01-00409.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Ebeling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ebeling, W., Gusein-Zade, S.M. (2017). Higher-Order Spectra, Equivariant Hodge–Deligne Polynomials, and Macdonald-Type Equations. In: Decker, W., Pfister, G., Schulze, M. (eds) Singularities and Computer Algebra. Springer, Cham. https://doi.org/10.1007/978-3-319-28829-1_5

Download citation

Publish with us

Policies and ethics