Skip to main content
Log in

Dispersion for Schrödinger operators on regular trees

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove dispersive estimates for two models: the adjacency matrix on a discrete regular tree, and the Schrödinger equation on a metric regular tree with the same potential on each edge/vertex. The latter model can be thought of as an extension of the case of periodic Schrödinger operators on the real line. We establish a \(t^{-3/2}\)-decay for both models which is sharp, as we give the first-order asymptotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. The nonnegativity of \(\Psi _1\) is a general fact: for any quantum graph, \(G^{z}(x,x)\) is a Herglotz function. While this is an immediate consequence of the spectral theorem in case of discrete graphs, for quantum graphs the statement is nontrivial; see [5,  Lemma A.8] for a proof.

  2. Note that here differentiation is w.r.t. energy. This is not the notation used in [11].

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. With Formulas, Graphs, and Mathematical Tables. Tenth Printing (1972)

  2. Ali Mehmeti, F., Ammari, K., Nicaise, S.: Dispersive effects for the Schrödinger equation on the tadpole graph. J. Math. Anal. Appl. 448, 262–280 (2017)

    Article  MathSciNet  Google Scholar 

  3. Ali Mehmeti, F., Ammari, K., Nicaise, S.: Dispersive effects and high frequency behaviour for the Schrödinger equation in star-shaped networks. Portugal. Math. 72, 309–355 (2015)

    Article  Google Scholar 

  4. Anantharaman, N., Ingremeau, M., Sabri, M., Winn, B.: Absolutely continuous spectrum for quantum trees. Commun. Math. Phys. 383, 537–594 (2021)

    Article  MathSciNet  Google Scholar 

  5. Anantharaman, N., Ingremeau, M., Sabri, M., Winn, B.: Empirical spectral measures of quantum graphs in the Benjamini–Schramm limit. J. Funct. Anal. 280, 108988 (2021)

    Article  MathSciNet  Google Scholar 

  6. Anantharaman, N., Sabri, M.: Poisson kernel expansions for Schrödinger operators on trees. J. Spectr. Theory 9, 243–268 (2019)

    Article  MathSciNet  Google Scholar 

  7. Anantharaman, N., Sabri, M.: Recent results of quantum ergodicity on graphs and further investigation. Ann. Fac. Sci. Toulouse Math. 28, 559–592 (2019)

    Article  MathSciNet  Google Scholar 

  8. Avni, N., Breuer, J., Simon, B.: Periodic Jacobi matrices on trees. Adv. Math. 370, 107241 (2020)

    Article  MathSciNet  Google Scholar 

  9. Banica, V., Ignat, L.I.: Dispersion for the Schrödinger equation on the line with multiple Dirac delta potentials and on delta trees. Anal. PDE. 7, 903–927 (2014)

    Article  MathSciNet  Google Scholar 

  10. Cai, K.: Dispersion for Schrödinger Operators with One-gap Periodic Potentials on \({\mathbb{R}}^{1}\). Dyn. PDE 3, 71–92 (2006)

    MATH  Google Scholar 

  11. Carlson, R.: Hill’s equation for a homogeneous tree. Electron. J. Differ. Equ. 23, 1–30 (1997)

    MathSciNet  MATH  Google Scholar 

  12. Colin de Verdière, Y.: Spectres de Graphes. Société Mathématique de France, Paris (1998)

    MATH  Google Scholar 

  13. Cuccagna, S.: Stability of standing waves for NLS with perturbed Lamé potential. J. Differ. Equ. 223, 112–160 (2006)

    Article  Google Scholar 

  14. Cuccagna, S.: Dispersion for Schrödinger equation with periodic potential in 1D. Commun. Part. Differ. Equ. 33, 2064–2095 (2008)

    Article  Google Scholar 

  15. Firsova, N.E.: On the time decay of a wave packet in a one-dimensional finite band periodic lattice. J. Math. Phys. 37, 1171–1181 (1996)

    Article  MathSciNet  Google Scholar 

  16. Hundertmark, D., Machinek, L., Meyries, M., Schnaubelt, R.: Operator Semigroups and Dispersive Equations. In: 16th Internet Seminar on Evolution Equations. Lecture Notes (2013)

  17. Ingremeau, M., Sabri, M., Winn, B.: Quantum ergodicity for large equilateral quantum graphs. J. Lond. Math. Soc. 101, 82–109 (2020)

    Article  MathSciNet  Google Scholar 

  18. Kawarabayashi, T., Suzuki, M.: Decay rate of the Green function in a random potential on the Bethe lattice and a criterion for localization. J. Phys. A. Math. Gen. 26, 5729–5750 (1993)

    Article  MathSciNet  Google Scholar 

  19. Keller, M., Lenz, D., Warzel, S.: On the spectral theory of trees with finite cone type. Israel J. Math. 194, 107–135 (2013)

    Article  MathSciNet  Google Scholar 

  20. Klein, A.: Extended states in the Anderson model on the Bethe lattice. Adv. Math. 133, 163–184 (1998)

    Article  MathSciNet  Google Scholar 

  21. Krasikov, I.: Approximations for the Bessel and Airy functions with an explicit error term. LMS J. Comput. Math. 17, 209–225 (2014)

    Article  MathSciNet  Google Scholar 

  22. Korotyaev, E.: The propagation of the waves in periodic media at large time. Asymptot. Anal. 15, 1–24 (1997)

    MathSciNet  MATH  Google Scholar 

  23. Landau, L.J.: Bessel Functions: Monotonicity and Bounds. J. Lond. Math. Soc. 61, 197–215 (2000)

    Article  MathSciNet  Google Scholar 

  24. Olenko, A. Ya.: Upper bound on \(\sqrt{x}J_\nu (x)\) and its applications. Integral Transforms Spec. Funct. 17, 455–467 (2006)

  25. Olver, F.W.J.: Error bounds for stationary phase approximations. SIAM J. Math. Anal. 5, 19–29 (1974)

    Article  MathSciNet  Google Scholar 

  26. Parnovski, L.: Bethe–Sommerfeld conjecture. Ann. Henri Poincaré 9, 457–508 (2008)

    Article  MathSciNet  Google Scholar 

  27. Pöschel, J., Trubowitz, E.: Inverse Spectral Theory. Academic Press, Cambridge (1987)

    MATH  Google Scholar 

  28. Simon, B.: Spectral analysis of rank one perturbations and applications. In: Mathematical Quantum Theory. II. Schrödinger Operators (Vancouver, BC, 1993), CRM Proceedings and Lecture Notes, 8. American Mathematical Society, Providence, RI (1995)

  29. Stefanov, A., Kevrekidis, P.G.: Asymptotic behaviour of small solutions for the discrete nonlinear Schrödinger and Klein–Gordon equations. Nonlinearity 18, 1841–1857 (2005)

    Article  MathSciNet  Google Scholar 

  30. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  31. Tao, T.: Nonlinear dispersive equations: local and global analysis. In: CBMS Regional Conference Series in Mathematics. Number 106. AMS (2006)

  32. Teschl, G.: Mathematical Methods in Quantum Mechanics. With Applications to Schrödinger Operators. Graduate Studies in Mathematics, vol. 157, 2nd edn. American Mathematical Society, Providence (2014)

    MATH  Google Scholar 

  33. Veliev, O.A.: Perturbation theory for the periodic multidimensional Schrödinger operator and the Bethe–Sommerfeld Conjecture. Int. J. Contemp. Math. Sci. 2, 19–87 (2007)

    Article  MathSciNet  Google Scholar 

  34. Zworski, M.: Semiclassical Analysis. Graduate Studies in Mathematics, vol. 138. American Mathematical Society, Providence (2012)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Sabri.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Stationary phase result

In this appendix we give an explicit stationary phase estimate. To put things into perspective, we need a stronger statement than the Van der Corput Lemma [30,  Corollary, p. 334] in the sense that we want an asymptotic \(\sim \) for the principal term, but we accept a weaker statement than the full asymptotic given in [30,  Proposition 3, p. 334] as we only care about the principal term. Our point is to make the remainder explicit in the phase function and observable, with as few derivatives as possible. This is important for our applications for quantum graphs, where we need to apply this for a series of integrals so we have to ensure the series of errors converge. For this we shall use the explicit version of [25].

Theorem A.1

Let \(p\in C^1[a,b]\), \(q \in C[a,b]\) and suppose p and q admit a Taylor expansion at \(x=a\). Assume \(x_0=a\) is the only critical point of p in [ab], so \(p'(a)=0\) and \(p'(x)\ne 0\) for \(x\in (a,b]\). Assume moreover \(p''(a)\ne 0\) and let \(\epsilon ={{\,\mathrm{sgn}\,}}p''(a)\). Then

$$\begin{aligned} \int _a^b\mathrm {e}^{\mathrm {i}t p(x)}q(x)\,\mathrm {d}x = \mathrm {e}^{\mathrm {i}t p(a)}\mathrm {e}^{\epsilon \pi \mathrm {i}/4}\sqrt{\frac{\pi }{2\epsilon p''(a)t}}q(a) + \delta _{0,1}(t)-\varepsilon _{0,1}(t), \end{aligned}$$

where

$$\begin{aligned} \delta _{0,1}(t)= & {} \int _a^b\mathrm {e}^{\mathrm {i}tp(x)}\bigg (q(x)-\frac{\epsilon q(a)p'(x)}{\sqrt{2\epsilon p''(a)}\sqrt{\epsilon (p(x)-p(a))}}\bigg )\,\mathrm {d}x, \\ \varepsilon _{0,1}(t)= & {} \mathrm {e}^{\mathrm {i}tp(a)}\mathrm {e}^{\epsilon \pi \mathrm {i}/4}\Gamma \Big (\frac{1}{2},\mathrm {i}t\epsilon (p(a)-\mathrm {i}p(b))\Big )\frac{q(a)}{\sqrt{2\epsilon p''(a) t}} \end{aligned}$$

and \(\Gamma (\alpha ,z) = \int _z^\infty \mathrm {e}^{-t}t^{\alpha -1}\,\mathrm {d}t\).

The statement can be greatly generalized : one can replace \(p''(a)\ne 0\) by \(p^{(k)}(a)\ne 0\), where \(p^{(j)}(a)=0\) for all \(j<k\). The function q(x) can also have an algebraic singularity \((x-a)^{-\rho }\), \(0\le \rho <1\). Finally higher order precision is also available with explicit terms.

Proof

First assume \(p'(x)>0\) for all \(x\in (a,b]\). We apply [25,  Theorem 1] with \(\lambda =1\), \(\mu =2\), \(m=0\), \(n=1\). Since pq admit Taylor expansions at \(x=a\), we have \(p(x)=p(a)+\sum _{s=0}^\infty p_s(x-a)^{s+2}\) and \(q(x)=\sum _{s=0}^\infty q_s(x-a)^s\) with \(p_0 = \frac{p''(a)}{2}\), \(q_0=q(a)\). Let \(a_0 = \frac{q_0}{2\sqrt{p_0}}\). Noting that \(n>m\mu -\lambda \), we take \(\nu =1\) and get

$$\begin{aligned} \int _a^b\mathrm {e}^{\mathrm {i}t p(x)}q(x)\,\mathrm {d}x = \mathrm {e}^{\mathrm {i}t p(a)}\mathrm {e}^{\pi \mathrm {i}/4}\Gamma \Big (\frac{1}{2}\Big )\frac{a_0}{t^{1/2}}+\delta _{0,1}(t)-\varepsilon _{0,1}(t), \end{aligned}$$

with \(\delta _{0,1}(t)= \int _a^b \mathrm {e}^{\mathrm {i}t p(x)}Q_{0,1}'(x)\,\mathrm {d}x\) and \(Q_{0,1}(x) = \int _0^xq(y)\,\mathrm {d}y - \frac{\Gamma (\frac{1}{2})}{\Gamma (\frac{3}{2})}a_0\sqrt{p(x)-p(a)}\), and \(\varepsilon _{0,1}(t)=\mathrm {e}^{\mathrm {i}tp(a)}\mathrm {e}^{\pi \mathrm {i}/4}\Gamma (\frac{1}{2},\mathrm {i}tp(a)-\mathrm {i}tp(b))\frac{q_0/2\sqrt{p_0}}{\sqrt{t}}\). The statement follows when \({{\,\mathrm{sgn}\,}}p''(a)>0\). Indeed, expanding \(p'(x)= p''(a)(x-a)(1+O(x-a))\), we see that that \(p'(x)>0\) iff \({{\,\mathrm{sgn}\,}}p''(a)>0\).

Now assume \(p'(x)<0\) for all \(x\in (a,b]\), implying \({{\,\mathrm{sgn}\,}}p''(a)<0\). As remarked in [25], the theorem remains true by essentially replacing \(\mathrm {i}\) by \(-\mathrm {i}\) through most of the proof. More precisely, here p(x) is decreasing so with the notations of [25], one considers the change of variables \(v=p(a)-p(x)\) instead. Then \(\int _a^b \mathrm {e}^{\mathrm {i}tp(x)}q(x)\,\mathrm {d}x = \mathrm {e}^{\mathrm {i}t p(a)}\int _0^{p(a)-p(b)}\mathrm {e}^{-\mathrm {i}t v}f(v)\,\mathrm {d}v\), with \(f(v)=\frac{q(x)}{-p'(x)}\). This shows all \(p_s\) get replaced by \(-p_s\). Moreover, for (5.4) to hold, we should take \(P_j(x)=\left\{ \frac{-1}{p'(x)}\frac{\mathrm {d}}{\mathrm {d}x}\right\} ^j\frac{q(x)}{-p'(x)}\). We take \(\beta =p(a)-p(b)\). Lemmas 1,2,3 in [25,  Section 4] continue to hold verbatim if we replace \(\mathrm {i}\) by \(-\mathrm {i}\) on both hypothesis and conclusion (e.g. now \( \lim \nolimits _{\eta \downarrow 0}\int _\beta ^\infty \mathrm {e}^{-\eta v}\mathrm {e}^{-\mathrm {i}tv}v^{\alpha -1}\,\mathrm {d}v = \frac{\mathrm {e}^{-\alpha \pi \mathrm {i}/2}}{x^\alpha }\Gamma (\alpha ,\mathrm {i}t\beta )\)). Returning to \(\int _0^\beta \mathrm {e}^{-\mathrm {i}tv}f(v)\,\mathrm {d}v\), we see that \(\mathrm {i}\) should be replaced by \(-\mathrm {i}\) everywhere in (5.8)–(5.11). The same replacement holds for (5.12) and (5.13), except for the terms containing \(\varepsilon ,\delta \), i.e. we have \(\mathrm {e}^{-\mathrm {i}tp(a)}\varepsilon _{m,n}(t)\) and \(\mathrm {e}^{-\mathrm {i}tp(a)}\{\delta _{m,n}(t)-\varepsilon _{m,n}(t)\}\), respectively. (5.14) becomes \(\mathrm {e}^{\mathrm {i}tp(a)}(\frac{-\mathrm {i}}{t})^m\int _0^\beta \mathrm {e}^{-\mathrm {i}tv}\phi _n^{(m)}(v)\,\mathrm {d}v\). With our choice of \(P_j\), \(\phi _n^{(m)}\) has the required form, completing the proof. \(\square \)

The following corollary is the main tool we use instead of the Van der Corput Lemma, cf. [30,  Corollary, p. 334], to obtain sharp estimates.

Corollary A.2

Under the assumptions of the previous theorem, define

$$\begin{aligned} Q_{1,1}(x) = \frac{q(x)}{\epsilon p'(x)} - \frac{q(a)}{\sqrt{2\epsilon p''(a)}\sqrt{\epsilon (p(x)-p(a))}}. \end{aligned}$$
(A.1)

Then

$$\begin{aligned}&\bigg |\int _a^b\mathrm {e}^{\mathrm {i}tp(x)}q(x)\,\mathrm {d}x - \mathrm {e}^{\mathrm {i}t p(a)}\mathrm {e}^{\epsilon \pi \mathrm {i}/4}\sqrt{\frac{\pi }{2|p''(a)|t}}q(a)\bigg | \\&\quad \le \frac{1}{t}\bigg (| Q_{1,1}(a)| + |Q_{1,1}(b)| + V_{a,b}(Q_{1,1}) + \frac{2|q(a)|}{\sqrt{2|p''(a)|}\sqrt{|p(b)-p(a)|}}\bigg ), \end{aligned}$$

where \(V_{a,b}(Q_{1,1}) = \int _a^b|Q_{1,1}'(y)|\,\mathrm {d}y\) is the total variation of \(Q_{1,1}\) over [ab].

Proof

Apply [25,  Eq. (6.3), (6.7)] to the previous theorem. \(\square \)

Example A.3

As is well-known, for any \(\alpha \in \mathbb {R}\), the Fresnel integral \(\int _0^\infty \mathrm {e}^{\mathrm {i}t\alpha x^2}\,\mathrm {d}x = \frac{\mathrm {e}^{\epsilon \pi \mathrm {i}/4}}{2}\sqrt{\frac{\pi }{|\alpha |\,t}}\), where \(\epsilon = {{\,\mathrm{sgn}\,}}\alpha \). The previous result tells us that if we cutoff at \(A>0\), then

$$\begin{aligned} \bigg |\int _0^A\mathrm {e}^{\mathrm {i}t\alpha x^2}-\frac{\mathrm {e}^{\epsilon \pi \mathrm {i}/4}}{2}\sqrt{\frac{\pi }{|\alpha |\,t}}\bigg |\le \frac{1}{A|\alpha |\,t}. \end{aligned}$$

Indeed, here \(Q_{1,1}\equiv 0\).

In general, we should compute the limit \(Q_{1,1}(a)\) carefully. Say \(\epsilon =1\). Then \(Q_{1,1}(x) = \frac{q(x)\sqrt{2p''(a)}\sqrt{p(x)-p(a)}-q(a)p'(x)}{p'(x)\sqrt{2p''(a)}\sqrt{p(x)-p(a)}}\). Expanding \(p(x)=p(a)+\frac{p''(a)}{2}(x-a)^2+\frac{p'''(a_x)}{6}(x-a)^3\), also \(p'(x)=p''(a)(x-a)+\frac{p'''({\tilde{a}}_x)}{2}(x-a)^2\) and \(q(x) = q(a)+q'({\hat{a}}_x)(x-a)\), for some \(a_x,{\tilde{a}}_x,{\hat{a}}_x\in (a,x)\), the numerator becomes

$$\begin{aligned}&q(x)\bigg [p''(a)(x-a)\sqrt{1+\frac{p'''(a_x)}{3p''(a)}(x-a)}\bigg ]-q(a)p'(x)\\&\quad = \left[ q(a)+q'({\hat{a}}_x)(x-a)\right] \cdot p''(a)(x-a)\cdot \bigg [1+\frac{p'''(a_x)}{6p''(a)}(x-a)+O(x-a)^2\bigg ]\\&\qquad -q(a)\Big [p''(a)(x-a)+\frac{p'''({\tilde{a}}_x)}{2}(x-a)^2\Big ]\\&\quad = q(a)\frac{p'''(a_x)}{6}(x-a)^2+O(x-a)^3+q'({\hat{a}}_x)p''(a)(x-a)^2\\&\qquad -\frac{q(a)p'''({\tilde{a}}_x)}{2}(x-a)^2 \end{aligned}$$

while the denominator is \([p''(a)(x-a)+O(x-a)^2][p''(a)(x-a)\sqrt{1+O(x-a)}]\). Thus,

$$\begin{aligned} Q_{1,1}(a) = \frac{q(a)\frac{p'''(a)}{6}+q'(a)p''(a)-\frac{q(a)p'''(a)}{2}}{p''(a)^2} = \frac{q'(a)}{p''(a)}-\frac{q(a)p'''(a)}{3p''(a)^2}.\qquad \end{aligned}$$
(A.2)

The same calculation shows that in general \(Q_{1,1}(a) = \epsilon \big (\frac{q'(a)}{p''(a)}-\frac{q(a)p'''(a)}{3p''(a)^2}\big )\).

We thus have in all cases

$$\begin{aligned}&\bigg |\int _a^b\mathrm {e}^{\mathrm {i}tp(x)}q(x)\,\mathrm {d}x - \mathrm {e}^{\mathrm {i}t p(a)}\mathrm {e}^{\epsilon \pi \mathrm {i}/4}\sqrt{\frac{\pi }{2|p''(a)|t}}q(a)\bigg | \nonumber \\&\quad \le \frac{1}{t}\bigg (\Big |\frac{q'(a)}{p''(a)}-\frac{q(a)p'''(a)}{3p''(a)^2}\Big |\nonumber \\&\qquad + \Big |\frac{q(b)}{p'(b)}\Big | + V_{a,b}(Q_{1,1}) + \frac{3|q(a)|}{\sqrt{2|p''(a)|}\sqrt{|p(b)-p(a)|}}\bigg ). \end{aligned}$$
(A.3)

If the only critical point is at \(x=b\) instead, then via the change of variables \(y=-x\), \({\tilde{p}}(y)=p(-y)\) and \({\tilde{q}}(y)=q(-y)\), we see that

$$\begin{aligned}&\bigg |\int _a^b\mathrm {e}^{\mathrm {i}tp(x)}q(x)\,\mathrm {d}x - \mathrm {e}^{\mathrm {i}t p(b)}\mathrm {e}^{\epsilon \pi \mathrm {i}/4}\sqrt{\frac{\pi }{2|p''(b)|t}}q(b)\bigg | \nonumber \\&\quad \le \frac{1}{t}\bigg (\Big |\frac{q'(b)}{p''(b)}-\frac{q(b)p'''(b)}{3p''(b)^2}\Big | + \Big |\frac{q(a)}{p'(a)}\Big | + V_{a,b}({\widetilde{Q}}_{1,1}) \nonumber \\&\qquad + \frac{3|q(b)|}{\sqrt{2|p''(b)|}\sqrt{|p(b)-p(a)|}}\bigg ), \end{aligned}$$
(A.4)

where \(\epsilon = {{\,\mathrm{sgn}\,}}p''(b)\) and \({\widetilde{Q}}_{1,1}(x) = \frac{q(x)}{\epsilon p'(x)} - \frac{q(b)}{\sqrt{2\epsilon p''(b)}\sqrt{\epsilon (p(x)-p(b))}}\).

Remark A.4

We conclude this appendix by comparing our statement (which is just a streamlined account of [25]) with some classical references.

  1. (1)

    The well-known Van der Corput lemma [30,  Corollary p. 334] gives some explicit bound over \(\big |\int _a^b\mathrm {e}^{\mathrm {i}t p(x)}q(x)\,\mathrm {d}x \big |\). However, this only yields an upper bound, not an asymptotically equivalent term. Moreover, it requires the additional condition \(|p''(x)|\ge 1\) over [ab].

  2. (2)

    The full asymptotics given in [30,  p. 334] or [34,  p. 41] do not have explicit bounds on the remainder. Inspecting the proof of [30], one first restricts the integral to a neighborhood \(N_{\epsilon }(a)\) of the critical point a such that \(\left| \frac{p'''(x)}{3p''(a)}(x-a)\right| <1\). The remainder integral is estimated using integration by parts. This means one needs to control the size of \(N_\epsilon (a)\) and have a lower bound over \(p'(x)\) outside \(N_\epsilon (a)\). A similar requirement appears in the proofs of [34,  p. 41, p. 45]. When such information is available one can expect to control \(V_{a,b}(Q_{1,1})\) in (A.3) by \((b-a)\Vert Q_{1,1}'\Vert _{\infty }\) efficiently; this is in fact what we did in the discussion following (3.34).

  3. (3)

    The methods of [30, 34] seem more costly in terms of derivatives. After a change of variables \(y=T(x)\), where T depends on the phase function p, the reduced integral (within the neighborhood) becomes \(\int _{N_{\epsilon }(a)}\mathrm {e}^{\mathrm {i}tp(x)} q(x)\,\mathrm {d}x = \int _{T(N_\epsilon (a))} \mathrm {e}^{\mathrm {i}t \epsilon y^2} u(y)\,\mathrm {d}y\), where \(u(y)=\frac{q(T^{-1}y)}{|T'(T^{-1}y)|}\). It is now necessary to control the derivatives of u. In fact a bound on the error we could extract from [30,  Step 2, p. 335] with \(x\eta (x):=u(x)-u(a)\) is \(Ct^{-1}|u|_2\), where \(|u|_2 = \max (\Vert u'\Vert _\infty ,\Vert u''\Vert _{\infty })\). The first method of [34,  p. 43] is more costly, requiring bounds over \(\Vert u^{(k)}\Vert _{\infty }\) for \(k\le 4\). However, after involved Taylor–Lagrange expansions, one sees that \(\Vert u^{(k)}\Vert _{\infty }\) is controlled by \(\displaystyle \max _{\begin{array}{c} j\le k\\ \ell \le k+3 \end{array}} \frac{\Vert q^{(j)}p^{(\ell )}\Vert _{\infty }}{|p''(a)|^2}\). This means that we need to control at least 5 derivatives of p, and 2 derivatives of q.

    The second method in [34,  p. 45] seems more costly for the observable. Taking \(m=1\) and controlling the error \(I_h^{(1)}(0)\) by taking \(N=2\) in [34,  p. 43], one finds it necessary to control all derivatives \(\frac{\Vert (g_pq)^{(k)}\Vert _{\infty }}{|p''(a)|^2}\) for \(k\le 6\), where \(g_p(x) = p(x)-p''(0)x^2/2\), here \(a=0\) and \(p(0)=0\).

Appendix B. Brief comparison with 1d periodic potentials

We continue here the discussion started in Sect. 1.2.

For transparency, consider first \(H=-\Delta \) on \(\mathbb {R}\). The Green’s function \(G^z_{\mathbb {R}}(x,y)\) for \(z\in \mathbb {C}^+\) can be constructed as usual using two semi-\(L^2\) ODE solutions. For example take \(V_z(x)=\mathrm {e}^{\mathrm {i}\sqrt{z}x}\in L^2[0,\infty )\) and \(U_z(x)=\mathrm {e}^{-\mathrm {i}\sqrt{z}x}\in L^2(-\infty ,0]\). Their Wronskian \(V_zU_z'-V_z'U_z=-2\mathrm {i}\sqrt{z}\), so \(G^z(x,y) = {\left\{ \begin{array}{ll} \frac{\mathrm {e}^{\mathrm {i}\sqrt{z}x}\mathrm {e}^{-\mathrm {i}\sqrt{z}y}}{-2\mathrm {i}\sqrt{z}} &{} \text {if } y\le x,\\ \frac{\mathrm {e}^{\mathrm {i}\sqrt{z}y}\mathrm {e}^{-\mathrm {i}\sqrt{z}x}}{-2\mathrm {i}\sqrt{z}}&{} \text {if } y\ge x. \end{array}\right. }\) Hence, \(G^z(x,y) = \frac{\mathrm {e}^{\mathrm {i}\sqrt{z}|x-y|}}{-2\mathrm {i}\sqrt{z}}\) and \({\text {Im}}G^{\lambda +\mathrm {i}0}(x,y)= \frac{\cos \sqrt{\lambda }|x-y|}{2\sqrt{\lambda }}\) for \(\lambda \in [0,\infty )=\sigma (-\Delta )\). By the spectral theorem, \(\mathrm {e}^{\mathrm {i}tH}(x,y) = \frac{1}{\pi }\int _{\sigma (H)}\mathrm {e}^{\mathrm {i}t\lambda }{\text {Im}}G^{\lambda +\mathrm {i}0}(x,y)\,\mathrm {d}\lambda =\int _0^\infty \frac{\mathrm {e}^{\mathrm {i}t\lambda }\cos \sqrt{\lambda }|x-y|}{2\pi \sqrt{\lambda }}\,\mathrm {d}\lambda = \int _0^\infty \frac{\mathrm {e}^{\mathrm {i}t(\lambda +\frac{\sqrt{\lambda }|x-y|}{t})}+\mathrm {e}^{\mathrm {i}t (\lambda -\frac{\sqrt{\lambda }|x-y|}{t})}}{4\pi \sqrt{\lambda }}\,\mathrm {d}\lambda \). Denote the velocity \(v=\frac{|x-y|}{t}\) and consider the changes of variables \(\sqrt{\lambda }=k\) and \(-\sqrt{\lambda }=k\), respectively. Then \(\mathrm {e}^{\mathrm {i}t H}(x,y) = \int _0^\infty \frac{\mathrm {e}^{\mathrm {i}t(k^2+kv)}}{2\pi }\,\mathrm {d}k + \int _{-\infty }^0\frac{\mathrm {e}^{\mathrm {i}t(k^2+kv)}}{2\pi }\,\mathrm {d}k = \frac{1}{2\pi }\int _{-\infty }^\infty \mathrm {e}^{\mathrm {i}t(k^2+kv)}\,\mathrm {d}k\). This is a Fresnel-type integral, it reduces to \(\mathrm {e}^{\mathrm {i}tH}(x,y)=\frac{1}{2}\sqrt{\frac{\mathrm {i}}{\pi t}}\mathrm {e}^{\frac{-\mathrm {i}tv^2}{4}}\).

For general periodic Schrödinger operators H on \(\mathbb {R}\), one simply replaces \(\mathrm {e}^{\pm \mathrm {i}\sqrt{z}}\) by Floquet solutions. The spectrum generally consists of a number of bands \((I_n)_{n\ge 1}\) of purely absolutely continuous spectrum which may be finite or infinite. A corresponding variable k is defined mapping \(I_n\) to bands \(\Sigma _n\cup (-\Sigma _{n})=:\Sigma (n)\), and one finds that \(\mathrm {e}^{\mathrm {i}tH}(x,y) = \sum _n\int _{\Sigma (n)} \mathrm {e}^{\mathrm {i}t(E(k)-kv)} X^+(x,k)X^-(x,k)\,\mathrm {d}k\), here E(k) behaves like \(k^2\) away from the band edges and \(X^{\pm }\) come from the Floquet solution. See [14, 15] for more details. This integral is now analyzed using the stationary phase method. It was shown in [22,  Corollary 4.4] that for finite bands \(\Sigma _n\), \(E''(k)\) has a unique zero \(k_n\in \Sigma _n\), moreover \(E'(k)\) is monotone increasing up to \(k_n\), then monotone decreasing. Now consider the phase function \(\phi (k) = E(k)-kv\). We have \(\phi '(k)=E'(k)-v\) and \(\phi ''(k)=E''(k)\). The only possibility that \(\phi '(k)=\phi ''(k)=0\), \(k\in \Sigma _n\), is if \(k=k_n\) and \(v=E'(k_n)\), i.e. for a very specific choice of v, hence xyt. In this situation the stationary phase method allows to conclude that the speed of dispersion slows down to \(t^{-1/3}\) (or slower in principle). This problem does not arise on the infinite band. In all other cases the decay will be \(t^{-1/2}\), or even faster when v is very large (in that case \(\phi '(k)\) does not vanish). See [15] for details when the number of bands is finite. The paper [14] considers the case of infinite number of bands, but only provides upper bounds, as it relies on the Van der Corput lemma; it can be an interesting question to test for sharpness by providing asymptotic equivalents as in [15].

Back to our case of quantum trees, the idea of constructing the resolvent kernel from two semi-\(L^2\) functions works again, see [11, 17]. The Floquet functions \(\mathrm {e}^{\pm \mathrm {i}k x}X^{\pm }(x,k)\) are replaced by \((\mu ^-(\lambda )^m)V^+_\lambda (x)\) and \((\mu ^-(\lambda ))^mU^-_{\lambda }(x)\), where m is the distance of x from a fixed edge \(b_0\) (think of \(b_0=[0,1]\) in \(\mathbb {R}\)) and \(V^+_\lambda ,U_\lambda ^-\) are fixed functions repeated on all edges (i.e. can be regarded as periodic). The main difference is that the multiplicative factor \(\mu ^-(\lambda )^m\) decays exponentially in m, in fact \(|\mu ^-(\lambda )^m|=q^{-m/2}\), in contrast to \(|\mathrm {e}^{\mathrm {i}k m}|=1\) in case of \(\mathbb {R}\), and the \(\lambda \)-variations of \({\text {Im}}G^{\lambda }_{\mathbf {T}_q}(x,y)\) also decay exponentially with d(xy). This is in contrast to \(\left| \frac{\mathrm {d}^j}{\mathrm {d}k^j}\mathrm {e}^{\mathrm {i}km}\right| = m^j\) which grows with the distance. These differences make it more reasonable to consider the phase function as \(\phi (k)= E(k)\) and keep the analog of \(\mathrm {e}^{\mathrm {i}k(x-y)}\) in the observable part; the aforementioned control over its modulus and derivatives allows for a good control using the stationary phase method. This is the qualitative reason why we observe a fixed speed of dispersion \(t^{-3/2}\) independently of the potentials W and \(\alpha \) we put on the edges/vertices.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ammari, K., Sabri, M. Dispersion for Schrödinger operators on regular trees. Anal.Math.Phys. 12, 56 (2022). https://doi.org/10.1007/s13324-022-00664-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-022-00664-y

Keywords

Mathematics Subject Classification

Navigation