Skip to main content
Log in

Quantum Hamiltonians and Stochastic Jumps

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

With many Hamiltonians one can naturally associate a |Ψ|2-distributed Markov process. For nonrelativistic quantum mechanics, this process is in fact deterministic, and is known as Bohmian mechanics. For the Hamiltonian of a quantum field theory, it is typically a jump process on the configuration space of a variable number of particles. We define these processes for regularized quantum field theories, thereby generalizing previous work of John S. Bell [3] and of ourselves [11]. We introduce a formula expressing the jump rates in terms of the interaction Hamiltonian, and establish a condition for finiteness of the rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali, S.T., Emch, G.G.: Fuzzy Observables in Quantum Mechanics. J. Math. Phys. 15, 176–182 (1974)

    Article  Google Scholar 

  2. Bacciagaluppi, G., Dickson, M.: Dynamics for modal interpretations. Found. Phys. 29, 1165–1201 (1999)

    Article  Google Scholar 

  3. Bell, J.S.: Beables for quantum field theory. Phys. Rep. 137, 49–54 (1986). Reprinted in Bell, J.S.: Speakable and unspeakable in quantum mechanics. Cambridge: Cambridge University Press (1987), p. 173

    Article  Google Scholar 

  4. Bohm, D.: A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables, I, Phys. Rev. 85, 166–179 (1952); Bohm, D.: A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables, II, Phys. Rev. 85, 180–193 (1952)

    Article  MATH  Google Scholar 

  5. Bohm, D., Hiley, B.J.: The Undivided Universe: An Ontological Interpretation of Quantum Theory. London: Routledge, Chapman and Hall, 1993

  6. Breiman, L.: Probability. Reading MA: Addison-Wesley, 1968

  7. Davies, E.B.: Quantum Theory of Open Systems. London, New York, San Francisco: Academic Press 1976

  8. Deotto, E., Ghirardi, G.C.: Bohmian mechanics revisited. Found. Phys. 28, 1–30 (1998)

    Google Scholar 

  9. Dixmier, J.: Les algèbres d’opérateurs dans l’espace hilbertien. Paris: Gauthier-Villars 1957

  10. Dürr, D., Goldstein, S., Taylor, J., Tumulka, R., Zanghì, N.: Bosons, Fermions, and the Topology of Configuration Space in Bohmian Mechanics. In preparation

  11. Dürr, D., Goldstein, S., Tumulka, R., Zanghì, N.: Trajectories and Particle Creation and Annihilation in Quantum Field Theory. J. Phys. A: Math. Gen. 36, 4143–4149 (2003)

    Article  MathSciNet  Google Scholar 

  12. Dürr, D., Goldstein, S., Tumulka, R., Zanghì, N.: Bell-Type Quantum Field Theories. http://arxiv.org/abs/quant-ph/0407116, 2004, to appear in J. Phys. A

  13. Dürr, D., Goldstein, S., Tumulka, R., Zanghì, N.: Trajectories From Klein–Gordon Functions. In preparation

  14. Dürr, D., Goldstein, S., Zanghì, N.: Quantum equilibrium and the origin of absolute uncertainty. J. Statist. Phys. 67, 843–907 (1992)

    Google Scholar 

  15. Georgii, H.-O., Tumulka, R.: Global Existence of Bell’s Time-Inhomogeneous Jump Process for Lattice Quantum Field Theory. To appear in Markov Processes Rel. Fields (2004), http:// arxiv.org/abs/math.PR/0312294, 2003

  16. Goldstein, S.: Bohmian Mechanics (2001). In: Stanford Encyclopedia of Philosophy (Winter 2002 Edition), E.N. Zalta (ed.), http://plato.stanford.edu/archives/win2002/entries/qm-bohm/

  17. Guerra, F., Marra, R.: Discrete stochastic variational principles and quantum mechanics. Phys. Rev. D 29, 1647–1655 (1984)

    Article  Google Scholar 

  18. Guichardet, A.: Special topics in topological algebras. New York, London, Paris: Gordon and Breach Science Publishers 1968

  19. Haag, R.: Local Quantum Physics: Fields, Particles, Algebras. Berlin: Springer-Verlag, 1992

  20. Halmos, P.R.: Introduction to Hilbert Space and the Theory of Multiplicity. Second Edition. New York: Chelsea, 1957

  21. Halmos, P.R.: Measure Theory. Princeton: Van Nostrand, 1965

  22. Kraus, K.: Position Observables of the Photon. In: W.C. Price, S.S. Chissick (eds.), The Uncertainty Principle and Foundations of Quantum Mechanics. New York: Wiley, 1977, pp. 293–320

  23. Kuratowski, C.: Topologie Vol. I. Warsaw: Panstwowe Wydawnictwo Naukowe, 1948

  24. Mackey, G.W.: Borel Structure in Groups and Their Duals. Trans. Amer. Math. Soc. 85, 134–165 (1957)

    MATH  Google Scholar 

  25. Nelson, E.: Quantum Fluctuations. Princeton: Princeton University Press, 1985

  26. Newton, T.D., Wigner, E.P.: Localized States for Elementary Systems. Rev. Mod. Phys. 21, 400–406 (1949)

    Article  MATH  Google Scholar 

  27. Parthasarathy, K.R.: Probability Measures on Metric Spaces. New York and London: Academic Press, 1967

  28. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I: Functional Analysis. New York and London: Academic Press, 1972

  29. Roy, S.M., Singh, V.: Generalized beable quantum field theory. Phys. Lett. B 234, 117–120 (1990)

    Article  Google Scholar 

  30. Schweber, S.S.: An Introduction to Relativistic Quantum Field Theory. New York: Harper and Row, 1961

  31. Sudbery, A.: Objective interpretations of quantum mechanics and the possibility of a deterministic limit. J. Phys. A: Math. Gen. 20, 1743–1750 (1987)

    Article  Google Scholar 

  32. Vink, J.C.: Quantum mechanics in terms of discrete beables. Phys. Rev. A 48, 1808–1818 (1993)

    Article  Google Scholar 

  33. von Neumann, J.: Functional Operators, Vol. I: Measures and Integrals. Princeton: Princeton University Press, (1950)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Detlef Dürr.

Additional information

Communicated by A. Connes

Acknowledgement We thank Ovidiu Costin, Avraham Soffer, and James Taylor of Rutgers University, Stefan Teufel of Technische Universität München, and Gianni Cassinelli and Alessandro Toigo of Università di Genova for helpful discussions. R.T. gratefully acknowledges support by the German National Science Foundation (DFG). N.Z. gratefully acknowledges support by INFN and DFG. Finally, we appreciate the hospitality that some of us have enjoyed, on more than one occasion, at the Mathematisches Institut of Ludwig-Maximilians-Universität München, at the Dipartimento di Fisica of Università di Genova, and at the Mathematics Department of Rutgers University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dürr, D., Goldstein, S., Tumulka, R. et al. Quantum Hamiltonians and Stochastic Jumps. Commun. Math. Phys. 254, 129–166 (2005). https://doi.org/10.1007/s00220-004-1242-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-004-1242-0

Keywords

Navigation