Skip to main content
Log in

A new definition of hitting time and an embedded Markov chain in continuous-time quantum walks

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a new probabilistic definition for the hitting time of a continuous-time quantum walk into a marked set of nodes, when measurements with respect to the canonical basis are performed according to the jump times of a Poisson process. Furthermore, we derive a formula for the calculation of the mean hitting time, based on our novel definition of hitting time, Wald’s theorem and the stochastic process that models our quantum measurement outcomes. This stochastic process results in a Markov chain, whose transition matrix contains the expected values of the squared norm of the entries of a random unitary matrix, and it can be thought as a way to embed a Markov chain in a continuous-time quantum walk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48(2), 1687 (1993)

    Article  ADS  Google Scholar 

  2. Childs, A.M.: Universal computation by quantum walk. Phys. Rev. Lett. 102, 180501 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  3. Lovett, N.B., Cooper, S., Everitt, M., Trevers, M., Kendon, V.: Universal quantum computation using the discrete-time quantum walk. Phys. Rev. A 81(4), 042330 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  4. Underwood, M.S., Feder, D.L.: Universal quantum computation by discontinuous quantum walk. Phys. Rev. A 82(4), 042304 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  5. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995). https://doi.org/10.1017/cbo9780511814075

    Book  MATH  Google Scholar 

  6. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomization and Probabilistic Techniques in Algorithms and Data Analysis, 2nd edn. Cambridge University Press, Cambridge (2017)

    MATH  Google Scholar 

  7. Paparo, G.D., Martin-Delgado, M.A.: Google in a quantum network. Sci. Rep. 2, 444 (2012). https://doi.org/10.1038/srep00444

    Article  ADS  Google Scholar 

  8. Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quantum Inf. Process. 11(5), 1015–1106 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Portugal, R.: Quantum Walks and Search Algorithms. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  10. Karlin, S., Taylor, H.M.: An Introduction to Stochastic Modelling, 3rd edn. Academic Press, New York (1998)

    MATH  Google Scholar 

  11. Kempe, J.: Discrete quantum walks hit exponentially faster. Probab. Theory Relat. Fields 133(2), 215–235 (2005). https://doi.org/10.1007/s00440-004-0423-2

    Article  MathSciNet  MATH  Google Scholar 

  12. Krovi, H., Brun, T.A.: Hitting time for quantum walks on the hypercube. Phys. Rev. A 73(3), 032341 (2006). https://doi.org/10.1103/physreva.73.032341

    Article  ADS  MathSciNet  Google Scholar 

  13. Varbanov, M., Krovi, H., Brun, T.A.: Hitting time for the continuous quantum walk. Phys. Rev. A 78(2), 022324 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  14. Kempf, A., Portugal, R.: Group velocity of discrete-time quantum walks. Phys. Rev. A 79(5), 052317 (2009). https://doi.org/10.1103/physreva.79.052317

    Article  ADS  MathSciNet  Google Scholar 

  15. Resnick, S.: A Probability Path. Birkhäuser, Boston (1999)

    MATH  Google Scholar 

  16. Resnick, S.I.: Adventures in Stochastic Processes. Birkhäuser, Boston (2002). https://doi.org/10.1007/978-1-4612-0387-2

    Book  MATH  Google Scholar 

  17. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58(2), 915–928 (1998). https://doi.org/10.1103/physreva.58.915

    Article  ADS  MathSciNet  Google Scholar 

  18. Wong, T.G., Tarrataca, L., Nahimov, N.: Laplacian versus adjacency matrix in quantum walk search. Quantum Inf. Process. 15(10), 4029–4048 (2016). https://doi.org/10.1007/s11128-016-1373-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Grimmett, G., Stirzaker, D.: Probability and Random Processes. Oxford University Press, Oxford (2020)

    MATH  Google Scholar 

  20. Ruiz-Ortiz, M.A.: Quantum hitting time. GitHub (2022). https://github.com/miguelruor/quantum_hitting_time

  21. Childs, A.M., Farhi, E., Gutmann, S.: An example of the difference between quantum and classical random walks. Quantum Inf. Process. 1(1/2), 35–43 (2002). https://doi.org/10.1023/a:1019609420309

    Article  MathSciNet  MATH  Google Scholar 

  22. Childs, A.M., Goldstone, J.: Spatial search by quantum walk. Phys. Rev. A 70(2), 022314 (2004). https://doi.org/10.1103/physreva.70.022314

    Article  ADS  Google Scholar 

  23. Su, C., Tang, Q.: Characterization on heavy-tailed distributions by means of hazard rate. Acta Math. Appl. Sin. Engl. Ser. 19(1), 135–142 (2003). https://doi.org/10.1007/s10255-003-0090-6

    Article  MathSciNet  MATH  Google Scholar 

  24. Pickands, J.: Statistical inference using extreme order statistics. Ann. Stat. 3(1), 119–131 (1975)

    MathSciNet  MATH  Google Scholar 

  25. Martín-González, E.M., Kolkovska, E.T., Murillo-Salas, A.: Approximation of the equilibrium distribution via extreme value theory: an application to insurance risk. Methodol. Comput. Appl. Probab. 23(1), 753–766 (2021). https://doi.org/10.1007/s11009-020-09779-w

    Article  MathSciNet  MATH  Google Scholar 

  26. Santiago-Alarcon, D., Tapia-McClung, H., Lerma-Hernández, S., Venegas-Andraca, S.E.: Quantum aspects of evolution: a contribution towards evolutionary explorations of genotype networks via quantum walks. J. R. Soc. Interface 17(172), 20200567 (2020). https://doi.org/10.1098/rsif.2020.0567

    Article  Google Scholar 

Download references

Acknowledgements

MARO acknowledges the financial support of Centro de Investigación en Matemáticas. SEVA acknowledges the financial support provided by Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias and Consejo Nacional de Ciencia y Tecnología (CONACyT) [SNI No. 41594]. SEVA acknowledges the unconditional support of his family. All authors gratefully acknowledge the support of IBM via the IBM Cloud Credit Award (No. 1027LA) granted to our project Quantum Walks over Genotype Networks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvador E. Venegas-Andraca.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz-Ortiz, M.A., Martín-González, E.M., Santiago-Alarcon, D. et al. A new definition of hitting time and an embedded Markov chain in continuous-time quantum walks. Quantum Inf Process 22, 224 (2023). https://doi.org/10.1007/s11128-023-03972-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03972-9

Keywords

Navigation