Skip to main content
Log in

Role of the GAD system in hop tolerance of Lactobacillus brevis

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

In this study, we investigated the contribution of the microbial acid stress tolerance mechanism glutamate decarboxylase (GAD) system to hop tolerance and concomitant maintenance of intracellular pH (pHin) in Lactobacillus brevis. In L. brevis, the GAD system comprises a transcriptional regulator (Gad-tr), a glutamate γ-aminobutyrate antiporter (GadC) and two glutamate decarboxylases (GadB1, GadB2). Hop iso-α-acids act as ionophores, which impair cells’ proton motive force. Hop-tolerant bacteria must therefore express effective mechanisms of pH maintenance such as the GAD system. To elucidate the specific roles of the two Gad isoenzymes, we examined the influence of iso-α-acids on the GAD system on a metabolic and transcriptional level of two L. brevis strains. Highly hop-tolerant L. brevis TMW 1.465 proved to perform better in maintenance of pHin in the presence of glutamate under hop stress when compared to the rather hop-sensitive strain L. brevis TMW 1.6. The transcriptional analysis unravelled the up- or downregulation of gad-tr, gadB 1 and gadC in hop-tolerant and hop-sensitive L. brevis, respectively. Since gadB 2 expression remained fairly unaltered, we concluded that L. brevis TMW 1.6 employs both Gad isoenzymes under acid stress, whereas L. brevis TMW 1.465 manages to survive with only one isoform (GadB2) and can consequently master additional hop stress better by inducing gadB 1 . These findings elucidate the GAD system’s role in high and low tolerance to antimicrobial hop components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aiba H, Adhya S, de Crombrugghe B (1981) Evidence for two functional gal promoters in intact Escherichia coli cells. J Biol Chem 256:11905–11910

    CAS  Google Scholar 

  2. Albert A (1985) Selective toxicity. In: The physico-chemical basis of therapy, Chap 10. Chapman and Hall, London, pp 327–429

  3. Arena MP, Romano A, Capozzi V, Beneduce L, Ghariani M, Grieco F, Lucas P, Spano G (2011) Expression of Lactobacillus brevis IOEB 9809 tyrosine decarboxylase and agmatine deiminase genes in wine correlates with substrate availability. Lett Appl Microbiol 53:395–402

    Article  CAS  Google Scholar 

  4. Back W (1994) Farbatlas und Handbuch der Getränkebiologie. Nuernberg, Germany

    Google Scholar 

  5. Bartóak T, Szalai G, Lőrincz Z, Bőurcsök G, Sági F (1994) High-speed RP-HPLC/FL analysis of amino acids after automated two-step derivatization with o-phthaldialdehyde/3-mercaptopropionic acid and 9-fluorenylmethyl chloroformate. J Liq Chromatogr Relat Technol 17:4391–4403

    Article  Google Scholar 

  6. Behr J, Gänzle MG, Vogel RF (2006) Characterization of a highly hop-resistant Lactobacillus brevis strain lacking hop transport. Appl Environ Microbiol 72:6483–6492

    Article  CAS  Google Scholar 

  7. Behr J, Vogel RF (2009) Mechanisms of hop inhibition: hop ionophores. J Agric Food Chem 57:6074–6081

    Article  CAS  Google Scholar 

  8. Berg JM, Tymoczko JL, Stryer L (2003) Biochemie. Spektrum Akademischer Verlag, Heidelberg

  9. Charalampopoulos D, Pandiella S, Webb C (2003) Evaluation of the effect of malt, wheat and barley extracts on the viability of potentially probiotic lactic acid bacteria under acidic conditions. Int J Food Microbiol 82:133–141

    Article  CAS  Google Scholar 

  10. Cotter PD, Gahan CG, Hill C (2001) A glutamate decarboxylase system protects Listeria monocytogenes in gastric fluid. Mol Microbiol 40:465–475

    Article  CAS  Google Scholar 

  11. Cotter PD, Hill C (2003) Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol Mol Biol Rev 67:429–453

    Article  CAS  Google Scholar 

  12. DeMoss RD, Bard RC, Gunsalus IC (1951) The mechanism of the heterolactic fermentation: a new route of ethanol formation. J Bacteriol 62:499–511

    CAS  Google Scholar 

  13. Duary RK, Batish VK, Grover S (2012) Relative gene expression of bile salt hydrolase and surface proteins in two putative indigenous Lactobacillus plantarum strains under in vitro gut conditions. Mol Biol Rep 39:2541–2552

    Article  CAS  Google Scholar 

  14. García-Villalba R, Cortacero-Ramírez S, Segura-Carretero A, Martín-Lagos Contreras JA, Fernández-Gutiérrez A (2006) Analysis of hop acids and their oxidized derivatives and iso-alpha-acids in beer by capillary electrophoresis-electrospray ionization mass spectrometry. J Agric Food Chem 54:5400–5409

    Article  Google Scholar 

  15. Haseleu G, Intelmann D, Hofmann T (2009) Structure determination and sensory evaluation of novel bitter compounds formed from β-acids of hop (Humulus lupulus L.) upon wort boiling. Food Chem 116:71–81

    Article  CAS  Google Scholar 

  16. Higuchi T, Hayashi H, Abe K (1997) Exchange of glutamate and gamma-aminobutyrate in a Lactobacillus strain. J Bacteriol 179:3362–3364

    CAS  Google Scholar 

  17. Intelmann D, Hofmann T (2010) On the autoxidation of bitter-tasting iso-alpha-acids in beer. J Agric Food Chem 58:5059–5067

    Article  CAS  Google Scholar 

  18. Jaskula B, Kafarski P, Aerts G, De Cooman L (2008) A kinetic study on the isomerization of hop alpha-acids. J Agric Food Chem 56:6408–6415

    Article  CAS  Google Scholar 

  19. Kandler O (1983) Carbohydrate metabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 49:209–224

    Article  CAS  Google Scholar 

  20. Kashket ER (1987) Bioenergetics of lactic acid bacteria: cytoplasmic pH and osmotolerance. FEMS Microbiol Lett 46:233–244

    Article  CAS  Google Scholar 

  21. Krulwich TA, Lewinson O, Padan E, Bibi E (2005) Do physiological roles foster persistence of drug/multidrug-efflux transporters? A case study. Nature reviews. Microbiology 3:566–572

    CAS  Google Scholar 

  22. Krämer J (2002) Lebensmittel-Mikrobiologie. Verlag Eugen Ulmer, Stuttgart

  23. Lagerborg VA, Clapper WE (1952) Amino acid decarboxylases of lactic acid bacteria. J Bacteriol 63:393–397

    CAS  Google Scholar 

  24. Li H, Cao Y (2010) Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids 39:1107–1116

    Article  CAS  Google Scholar 

  25. Li H, Qiu T, Gao D, Cao Y (2010) Medium optimization for production of gamma-aminobutyric acid by Lactobacillus brevis NCL912. Amino Acids 38:1439–1445

    Article  CAS  Google Scholar 

  26. Ma D, Lu P, Yan C, Fan C, Yin P, Wang J, Shi Y (2012) Structure and mechanism of a glutamate-GABA antiporter. Nature 483:632–636

    Article  CAS  Google Scholar 

  27. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  Google Scholar 

  28. Rodríguez C, Rimaux T, Fornaguera MJ, Vrancken G, de Valdez GF, De Vuyst L, Mozzi F (2012) Mannitol production by heterofermentative Lactobacillus reuteri CRL 1101 and Lactobacillus fermentum CRL 573 in free and controlled pH batch fermentations. Appl Microbiol Biotechnol 93:2519–2527

    Article  Google Scholar 

  29. Sakamoto K (2002) Beer spoilage bacteria and hop resistance in Lactobacillus brevis. University of Groningen, Netherlands

    Google Scholar 

  30. Sakamoto K, Konings WN (2003) Beer spoilage bacteria and hop resistance. Int J Food Microbiol 89:105–124

    Article  CAS  Google Scholar 

  31. Shimwell JL (1937) On the relation between the staining properties of bacteria and their reaction towards hop antiseptic. Part I, II. J Inst Brew 43:111–118

    Article  CAS  Google Scholar 

  32. Simpson WJ (1993) Ionophoric action of trans-isohumulone on Lactobacillus brevis. J Gen Microbiol 139:1041–1045

    Article  CAS  Google Scholar 

  33. Simpson WJ (1993) Studies on the sensitivity of lactic acid bacteria to hop bitter acids. J Inst Brew 99:405–411

    Article  CAS  Google Scholar 

  34. Simpson WJ, Fernandez JL (1994) Mechanism of resistance of lactic acid bacteria to trans-isohumulone. J Am Soc Brew Chem 52(1):9–11

    CAS  Google Scholar 

  35. Simpson WJ, Fernandez JL (1992) Selection of beer-spoilage lactic acid bacteria and induction of their ability to grow in beer. Lett Appl Microbiol 14:13–16

    Article  Google Scholar 

  36. Simpson WJ, Smith ARW (1992) Factors affecting antibacterial activity of hop compounds and their derivatives. J Appl Bacteriol 72:327–334

    Article  CAS  Google Scholar 

  37. Small PL, Waterman SR (1998) Acid stress, anaerobiosis and gadCB: lessons from Lactococcus lactis and Escherichia coli. Trends Microbiol 6:214–216

    Article  CAS  Google Scholar 

  38. Teuber M, Schmalreck AF (1973) Membrane leakage in Bacillus subtilis 168 induced by the hop constituents lupulone, humulone, isohumulone and humulinic acid. Arch Mikrobiol 94:159–171

    Article  CAS  Google Scholar 

  39. Toro M, Arzt E, Cerbòn J, Alegría G, Alva R, Meas Y, Estrada-O S (1987) Formation of ion-translocating oligomers by Nigericin. J Membr Biol 95:1–8

    Article  CAS  Google Scholar 

  40. Van der Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maquin E (2002) Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek 82:187–216

    Article  Google Scholar 

Download references

Acknowledgments

This research project was supported by the German Ministry of Economics and Technology (via AiF) and the Wifoe (Wissenschaftsförderung der Deutschen Brauwirtschaft e.V., Berlin) project AiF 16124N. Hop iso-α-acids were kindly provided by Simon H. Steiner Hopfen GmbH, Mainburg, Germany.

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Behr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schurr, B.C., Behr, J. & Vogel, R.F. Role of the GAD system in hop tolerance of Lactobacillus brevis . Eur Food Res Technol 237, 199–207 (2013). https://doi.org/10.1007/s00217-013-1980-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-013-1980-3

Keywords

Navigation