Skip to main content
Log in

Relative gene expression of bile salt hydrolase and surface proteins in two putative indigenous Lactobacillus plantarum strains under in vitro gut conditions

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Probiotic bacteria must overcome the toxicity of bile salts secreted in the gut and adhere to the epithelial cells to enable their better colonization with extended transit time. Expression of bile salt hydrolase and other proteins on the surface of probiotic bacteria can help in better survivability and optimal functionality in the gut. Two putative Lactobacillus plantarum isolates i.e., Lp9 and Lp91 along with standard strain CSCC5276 were used. A battery of six housekeeping genes viz. gapB, dnaG, gyrA, ldhD, rpoD and 16S rRNA were evaluated by using geNorm 3.4 excel based application for normalizing the expression of bile salt hydrolase (bsh), mucus-binding protein (mub), mucus adhesion promoting protein (mapA), and elongation factor thermo unstable (EF-Tu) in Lp9 and Lp91. The maximal level of relative bsh gene expression was recorded in Lp91 with 2.89 ± 0.14, 4.57 ± 0.37 and 6.38 ± 0.19 fold increase at 2% bile salt concentration after 1, 2 and 3 h, respectively. Similarly, mub and mapA genes were maximally expressed in Lp9 at the level of 20.07 ± 1.28 and 30.92 ± 1.51 fold, when MRS was supplemented with 0.05% mucin and 1% each of bile and pancreatin (pH 6.5). However, in case of EF-Tu, the maximal expression of 42.84 ± 5.64 fold was recorded in Lp91 in the presence of mucin alone (0.05%). Hence, the expression of bsh, mub, mapA and EF-Tu could be considered as prospective biomarkers for screening of novel probiotic lactobacillus strains for optimal functionality in the gut.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sartor RB (2004) Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology 126:1620–1633

    Article  PubMed  Google Scholar 

  2. De Vries MC, Vaughan EE, Kleerebezem M et al (2006) Lactobacillus plantarum survival, functional and potential probiotic properties in the human intestinal tract. Int Dairy J 16:1018–1028

    Article  Google Scholar 

  3. Kobayashi H, Suzuki T, Unemoto T (1986) Streptococcal cytoplasmic pH is regulated by changes in the amount and activity of a proton-translocating ATPase. J Biol Chem 261:627–630

    PubMed  CAS  Google Scholar 

  4. Kleerebezem M, Boekhorst J, Van Kranenburg R et al (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci USA 100:1990–1995

    Article  PubMed  CAS  Google Scholar 

  5. Duary RK, Batish VK, Grover S (2010) Expression of atpD gene in putative indigenous probiotic L. plantarum strains under in vitro acidic conditions by RT-qPCR. Res Microbiol 161:399–405. doi:10.1016/j.resmic.2010.03.012

    Article  PubMed  CAS  Google Scholar 

  6. Conway PL, Reginold FA (1989) Role of erythrosine in the inhibition of adhesion of Lactobacillus fermentum strain 737 to mouse stomach tissue. J Gen Microbiol 135:1167–1177

    PubMed  CAS  Google Scholar 

  7. Roberfroid MB (2000) Prebiotics and probiotics: Are they functional foods? Am J Clin Nutr 71(6):1682S–1687S

    PubMed  CAS  Google Scholar 

  8. Steidler L, Hans W, Schotte L et al (2000) Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289:1352–1355

    Article  PubMed  CAS  Google Scholar 

  9. Grangette C, Muller-Alouf H, Geoffroy M et al (2002) Protection against tetanus toxin after intragastric administration of two recombinant lactic acid bacteria: impact of strain viability and in vivo persistence. Vaccine 20:3304–3309

    Article  PubMed  CAS  Google Scholar 

  10. Kim GB, Lee BH (2008) Genetic analysis of a bile salt hydrolase in Bifidobacterium animalis ssp. lactis KL61. J Appl Microbiol 105(3):778–790

    Article  PubMed  CAS  Google Scholar 

  11. Tannock GW, Dashkevicz MP, Feighner SD (1989) Lactobacilli and bile salt hydrolase in the murine intestinal tract. Appl Environ Microbiol 55:1848–1851

    PubMed  CAS  Google Scholar 

  12. Mc Auliffe O, Cano RJ, Klaenhammer TR (2005) Genetic analysis of two bile salt hydrolase activities in Lactobacillus acidophilus NCFM. Appl Environ Microbiol 71:4925–4929

    Article  CAS  Google Scholar 

  13. Liong MT, Shah NP (2005) Bile salt deconjugation ability, bile salt hydrolase activity and cholesterol co-precipitation ability of lactobacilli strains. Int Dairy J 15:391–398

    Article  CAS  Google Scholar 

  14. Mathara JM, Schillinger U, Guigas C et al (2008) Functional characteristics of Lactobacillus spp. from traditional Maasai fermented milk products in Kenya. Int J Food Microbiol 126(12):57–64

    Article  PubMed  CAS  Google Scholar 

  15. Sudhamani M, Ismaiel E, Geis A et al (2008) Characterisation of pSMA23, a 3.5 kbp plasmid of Lactobacillus casei, and application for heterologous expression in Lactobacillus. Plasmid 59(1):11–19

    Article  PubMed  CAS  Google Scholar 

  16. Jones BV, Begley M, Hill C et al (2008) Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc Natl Acad Sci USA 105(36):13580–13585. doi:10.1073/pnas.0804437105

    Article  PubMed  CAS  Google Scholar 

  17. Buck BL, Altermann E, Svingerud T et al (2005) Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Appl Environ Microbiol 71(12):8344–8351

    Article  PubMed  CAS  Google Scholar 

  18. Kaushik JK, Kumar A, Duary RK et al (2009) Functional and probiotic attributes of an indigenous isolate of Lactobacillus plantarum. PLoS ONE 4(12):e8099. doi:10.1371/journal.pone.0008099

    Article  PubMed  Google Scholar 

  19. Azcarate-Peril MA, Tallon R, Klaenhammer TR (2009) Temporal gene expression and probiotic attributes of Lactobacillus acidophilus during growth in milk. J Dairy Sci 92:870–886. doi:10.3168/jds.2008-1457

    Article  PubMed  CAS  Google Scholar 

  20. Miyoshi Y, Okada S, Uchimura T et al (2006) A mucus adhesion promoting protein, MapA, mediates the adhesion of Lactobacillus reuteri to Caco-2 human intestinal epithelial cells. Biosci Biotechnol Biochem 70(7):1622–1628

    Article  PubMed  CAS  Google Scholar 

  21. Nakamura J, Ito D, Nagai K et al (1997) Rapid and sensitive detection of hiochi bacteria by amplification of hiochi bacterial common antigen gene by PCR method and characterisation of the antigen. J Fermen Bioeng 185:7019–7023

    Google Scholar 

  22. Granato D, Bergonzelli GE, Pridmore RD et al (2004) Cell surface-associated elongation factor Tu mediates the attachment of Lactobacillus johnsonii NCC533 (La1) to human intestinal cells and mucins. Infect Immun 72(4):2160–2169

    Article  PubMed  CAS  Google Scholar 

  23. Ramiah K, van Reenen CA, Dicks LMT (2007) Expression of the mucus adhesion genes Mub and MapA, adhesion-like factor EF-Tu and bacteriocin gene plaA of Lactobacillus plantarum 423, monitored with real-time PCR. Int J Food Microbiol 116:405–409

    Article  PubMed  CAS  Google Scholar 

  24. Ramiah K, van Reenen CA, Dicks LMT (2009) Expression of the mucus adhesion gene mub, surface layer protein slp and adhesion-like factor EF-TU of Lactobacillus acidophilus ATCC 4356 under digestive stress conditions, as monitored with real-time PCR. Probiotics Antimicrob Prot 1:91–95. doi:10.1007/s12602-009-9009-8

    Article  CAS  Google Scholar 

  25. FAO/WHO (2002) Working group report on drafting guidelines for the evaluation of probiotics in food London. Ontario, Canada

    Google Scholar 

  26. Crittenden R, Karppinen S, Ojanen S et al (2002) In vitro fermentation of cereal dietary fibre carbohydrates by probiotic and intestinal bacteria. J Sci Food Agric 82:781–789

    Article  CAS  Google Scholar 

  27. Bustin SA, Benes V, Garson JA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  PubMed  CAS  Google Scholar 

  28. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  CAS  Google Scholar 

  29. Vandesompele J, De Preter K, Pattyn F et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034.1–research0034.11

    Article  Google Scholar 

  30. Hellemans J, Mortier G, De Paepe A et al (2007) Base relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19. doi:10.1186/gb-2007-8-2-r19

    Article  PubMed  Google Scholar 

  31. Klaenhammer TR, Kleeman EG (1981) Growth characteristics, bile sensitivity and freeze damage in colonial variants of Lactobacillus acidophilus. Appl Environ Microbiol 41(6):1461–1467

    PubMed  CAS  Google Scholar 

  32. Gilliland SE, Walker K (1990) Factors to consider when selecting a culture of Lactobacillus acidophilus as a dietary adjunct to produce a hypocholestrolemic effect in human. J Dairy Sci 73:905–911

    Article  PubMed  CAS  Google Scholar 

  33. Lankaputhra WEV, Shah NP (1995) Survival of Lactobacillus acidophilus and Bifidobacterium spp. in the presence of acid and bile salts. Cult Dairy Prod J 30:2–7

    CAS  Google Scholar 

  34. Ibrahirn SA, Bezkorovainy A (1993) Survival of bifidobacteria in the presence of bile salt. J Sci Food Agric 62:351–354

    Article  Google Scholar 

  35. Nomura M, Gourse R, Bauhhman G (1984) Regulation of the synthesis of ribosomal components. Annu Rev Biochem 53:75–117

    Article  PubMed  CAS  Google Scholar 

  36. Vandecasteele SJ, Peetermans WE, Merekx R et al (2001) Quantification of expression of Staphylococcus epidermidis housekeeping genes with Taqman quantitative PCR during in vitro growth and under different conditions. J Bacteriol 183:7094–7101

    Article  PubMed  CAS  Google Scholar 

  37. Savard P, Roy D (2009) Determination of differentially expressed genes involved in arabinoxylan degradation by Bifidobacterium longum NCC2705 using real-time RT-PCR. Probiot Antimicrob Prot 1:121–129. doi:10.1007/s12602-009-9015-x

    Article  CAS  Google Scholar 

  38. Bron PA, Molenaar D, De Vos WM et al (2006) DNA micro-array based identification of bile-responsive genes in Lactobacillus plantarum. J Appl Microbiol 100(4):728–738

    Article  PubMed  CAS  Google Scholar 

  39. Roos S, Jonsson H (2002) A high-molecular-mass cell-surface protein from Lactobacillus reuteri 1063 adheres to mucus components. Microbiology 148:433–442

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Director, National Dairy Research Institute (NDRI, Karnal, India) for providing facilities to carry out the study. We thank Dr. N.·P. Shah (Australia) for kindly providing the standard Lactobacillus strain. The financial support received from Indian Council of Agricultural Research (ICAR, India) in terms of providing fellowship to the first author of the paper to carry out his doctoral program is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunita Grover.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 750 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duary, R.K., Batish, V.K. & Grover, S. Relative gene expression of bile salt hydrolase and surface proteins in two putative indigenous Lactobacillus plantarum strains under in vitro gut conditions. Mol Biol Rep 39, 2541–2552 (2012). https://doi.org/10.1007/s11033-011-1006-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1006-9

Keywords

Navigation