Skip to main content
Log in

Changes in odour-active compounds of two varieties of Colombian guava (Psidium guajava L.) during ripening

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Changes in the concentrations of odour-active compounds in two varieties of Colombian guava (Psidium guajava L.) fruits during ripening were followed by application of stable isotopic dilution analyses (SIDA). The data revealed that, in particular, the concentration of C6-aldehydes, as well as the amount of the sulphur compounds 3-sulphanylhexyl acetate and 3-sulphanyl-1-hexanol, decreased with ripening, while the concentrations of aliphatic esters and furanones increased during this process. A calculation of odour activity values indicated that although the C6-aldehydes decreased during ripening, these still made the greatest contribution to the overall aroma at all stages of ripening. Changes in odour-active compounds in white- and pink-fleshed guavas showed the same behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CI:

Chemical ionisation

OAV:

Odour activity value

SAFE:

Solvent-assisted flavour evaporation

SIDA:

Stable isotope dilution assay

SS:

Soluble solid content

TA:

Titrable acidity

GC-GC–MS:

Two-dimensional gas chromatography–mass spectrometry

References

  1. Gómez SR (2001) Memorias del segundo seminario internacional de la guayaba y su agroindustria. Corporación Colombiana de Investigación Agropecuaria (CORPOICA), Barbosa, Colombia, pp 3–5

    Google Scholar 

  2. Jiménez R (2003) Estandarización de la elaboración de sabajón de Guayaba para la agroindustria rural en Colombia. Corporación Colombiana de Investigación Agropecuaria (CORPOICA), Barbosa, Colombia, pp 44–45

    Google Scholar 

  3. Jain N, Dhawan K, Malhotra S, Singh R (2003) Plant Foods Hum Nutr 58:309–315

    Article  CAS  Google Scholar 

  4. Jain N, Dhawan K, Malhotra S, Siddiqui S, Singh R (2001) Acta Physiol Plant 23:357–362

    Article  CAS  Google Scholar 

  5. Bulk RE, Babiker EFE, Tinay AHE (1997) Food Chem 59:395–399

    Article  Google Scholar 

  6. Bashir H, Abu-Goukh A (2003) Food Chem 80:557–563

    Article  CAS  Google Scholar 

  7. Azollini M, Jacomino P, Urbano I, Kluge R, Schiavinato M (2005) Braz J Plant Physiol 17:299–306

    Google Scholar 

  8. Toth-Markus M, Siddiqui S, Kovacs E, Roth E, Nemeth-Szerdahely E (2005) Acta Alimentaria 34:259–266

    Article  CAS  Google Scholar 

  9. Soares F, Pereira T, Marques M, Monteiro A (2007) Food Chem 100:15–21

    Article  CAS  Google Scholar 

  10. Chyau Ch-Ch, Chen S-Y, Wu Ch-M (1992) J Agric Food Chem 40:846–849

    Article  CAS  Google Scholar 

  11. Brown B, Willis R (1983) Sci Hortic 19:237–243

    Article  CAS  Google Scholar 

  12. Steinhaus P, Schieberle P (2007) J Agric Food Chem 55:6262–6269

    Article  CAS  Google Scholar 

  13. Greger V, Schieberle P (2007) J Agric Food Chem 55:5221–5228

    Article  CAS  Google Scholar 

  14. Steinhaus M, Sinuco D, Polster J, Osorio C, Schieberle P (2008) J Agric Food Chem 56:4120–4127

    Article  CAS  Google Scholar 

  15. Steinhaus M, Sinuco D, Polster J, Osorio C, Schieberle P (2009) J Agric Food Chem 57:2882–2888

    Article  CAS  Google Scholar 

  16. Sen A, Grosch W (1991) Z Lebensm Unters Forsch 192:541–547

    Article  CAS  Google Scholar 

  17. Schieberle P, Hofmann T (1997) J Agric Food Chem 45:227–232

    Article  CAS  Google Scholar 

  18. Blank I, Fay L, Lakner FJ, Schlosser M (1997) J Agric Food Chem 45:2642–2648

    Article  CAS  Google Scholar 

  19. Blank I, Lin J, Fumeaux R, Welti DH, Fay LB (1996) J Agric Food Chem 44:1851–1856

    Article  CAS  Google Scholar 

  20. Engel W, Bahr W, Schieberle P (1999) Eur Food Res Technol 209:237–241

    Article  CAS  Google Scholar 

  21. Montes JC, Vicario IM, Raymundo M, Fett R, Heredia FJ (2005) Food Res Int 38:983–988

    Article  CAS  Google Scholar 

  22. González IA, Morales A, Osorio C, Meléndez-Martínez AJ, González-Miret ML, Heredia FJ (2010) J Sci Food Agric (submitted)

  23. Hatanaka A (1993) Phytochemistry 34:1201–1218

    Article  CAS  Google Scholar 

  24. Tominaga T, Des Gachons C, Dubourdieu D (1998) J Agric Food Chem 46:5215–5219

    Article  CAS  Google Scholar 

  25. Engel KH, Tressl R (1991) J Agric Food Chem 39:2249–2252

    Article  CAS  Google Scholar 

  26. Schneider R, Charrier F, Razungles A, Baumes R (2006) Anal Chim Acta 563:58–64

    Article  CAS  Google Scholar 

  27. Wein M, Lewinsohn E, Schwab W (2001) J Agric Food Chem 49:2427–2432

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research project was supported by the Ministry of Agriculture of Colombia and Asociación Hortofruticola de Colombia (ASOHOFRUCOL) contract 094-2/06, the German Academic Exchange Service (DAAD), and the Academy of Sciences for the Developing World (TWAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Cristina Sinuco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinuco, D.C., Steinhaus, M., Schieberle, P. et al. Changes in odour-active compounds of two varieties of Colombian guava (Psidium guajava L.) during ripening. Eur Food Res Technol 230, 859–864 (2010). https://doi.org/10.1007/s00217-010-1232-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-010-1232-8

Keywords

Navigation