Skip to main content
Log in

Altered prefrontal neurochemistry in the DJ-1 knockout mouse model of Parkinson’s disease: complementary semi-quantitative analyses with in vivo magnetic resonance spectroscopy and MALDI-MSI

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In vivo proton magnetic resonance spectroscopy (1H-MRS) and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) are two semi-quantitative analytical methods commonly used in neurochemical research. In this study, the two methods were used complementarily, in parallel, to investigate neurochemical perturbations in the medial prefrontal cortex (mPFC) of 9-month-old DJ-1 knockout mice, a well-established transgenic model for Parkinson’s diseases. Convergingly, the results obtained with the two methods demonstrated that, compared with the wild-type (WT) mice, the DJ-1 knockout mice had significantly increased glutathione (GSH) level and GSH/glutamate (Glu) ratio in the mPFC, which likely presented an astrocytic compensatory mechanism in response to elevated regional oxidative stress induced by the loss of DJ-1 function. The results from this study also highlighted (1) the need to be cautious when interpreting the in vivo 1H-MRS results obtained from aged transgenic animals, in which the concentration of internal reference, being whether water or total creatine, could no longer be assumed to be the same as that in the age-matched WT animals, and (2) the necessity and importance of complementary analyses with more than one method under such circumstances.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data set will be available upon request.

Abbreviations

1H-MRS:

Proton magnetic resonance spectroscopy

MRI:

Magnetic resonance imaging

MALDI-MSI:

Matrix-assisted laser desorption/ionization mass spectrometry imaging

6-OHDA:

6-Hydroxydopamine

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

AD:

Alzheimer’s disease

PD:

Parkinson’s disease

WT:

Wild-type

CRLB:

Cramér–Rao lower bound

tCr:

Total creatine

Cr:

Creatine

PCr:

Phosphocreatine

NAA:

N-Acetyl aspartate

Tau:

Taurine

Cys:

Cysteine

DA:

Dopaminergic

Gln:

Glutamine

Glu:

Glutamate

Gly:

Glycine

GSH:

Glutathione

MFB:

Medial forebrain bundles

mPFC:

Medial prefrontal cortex

SNc:

Substantia nigra pars compacta

FrA:

Frontal association cortex

ROI:

Region of interest

SNR:

Signal-to-noise ratio

FWHM:

Full width at half maximum

References

  1. Damier P, Hirsch EC, Agid Y, Graybiel AM. The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain. 1999;122:1437–48.

    Article  PubMed  Google Scholar 

  2. George JL, Mok S, Moses D, Wilkins S, Bush AI, Cherny RA, et al. Targeting the progression of Parkinson’s disease. Curr Neuropharmacol. 2009;7(1):9–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee MR, Denic A, Hinton DJ, Mishra PK, Choi D-S, Pirko I, et al. Preclinical 1H-MRS neurochemical profiling in neurological and psychiatric disorders. Bioanalysis. 2012;4(14):1787–804.

    Article  CAS  PubMed  Google Scholar 

  4. Jenner P, Olanow CW. Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology. 1996;47(6):S161–70.

    Article  CAS  PubMed  Google Scholar 

  5. González-Rodríguez P, Zampese E, Stout KA, Guzman JN, Ilijic E, Yang B, et al. Disruption of mitochondrial complex I induces progressive parkinsonism. Nature. 2021;599(7886):650–6.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Benshachar D, Riederer P, Youdim MBH. Iron-melanin interaction and lipid peroxidation: implications for Parkinson’s disease. J Neurochem. 1991;57(5):1609–14.

    Article  CAS  Google Scholar 

  7. Mailly F, Marin P, Israel M, Glowinski J, Premont J. Increase in external glutamate and NMDA receptor activation contribute to H2O2-induced neuronal apoptosis. J Neurochem. 1999;73(3):1181–8.

    Article  CAS  PubMed  Google Scholar 

  8. Mythri RB, Venkateshappa C, Harish G, Mahadevan A, Muthane UB, Yasha TC, et al. Evaluation of markers of oxidative stress, antioxidant function and astrocytic proliferation in the striatum and frontal cortex of Parkinson’s disease brains. Neurochem Res. 2011;36(8):1452–63.

    Article  CAS  PubMed  Google Scholar 

  9. Kumar J, Liddle EB, Fernandes CC, Palaniyappan L, Hall EL, Robson SE, et al. Glutathione and glutamate in schizophrenia: a 7T MRS study. Mol Psychiatry. 2018;25(4):873–82.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Duarte JMN, Lei H, Mlynárik V, Gruetter R. The neurochemical profile quantified by in vivo 1H NMR spectroscopy. Neuroimage. 2012;61(2):342–62.

    Article  CAS  PubMed  Google Scholar 

  11. Alger JR. Quantitative proton magnetic resonance spectroscopy and spectroscopic imaging of the brain: a didactic review. Top Magn Reson Imaging. 2010;21(2):115–28.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pearce RKB, Owen A, Daniel S, Jenner P, Marsden CD. Alterations in the distribution of glutathione in the substantia nigra in Parkinson’s disease. J Neural Transm. 1997;104(6–7):661–77.

    Article  CAS  PubMed  Google Scholar 

  13. Smeyne RJ, Gröger A, Kolb R, Schäfer R, Klose U. Dopamine reduction in the substantia nigra of Parkinson’s disease patients confirmed by in vivo magnetic resonance spectroscopic imaging. PLoS ONE. 2014;9(1):e84081.

    Article  Google Scholar 

  14. Toczylowska B, Zieminska E, Michałowska M, Chalimoniuk M, Fiszer U. Changes in the metabolic profiles of the serum and putamen in Parkinson’s disease patients – in vitro and in vivo NMR spectroscopy studies. Brain Res. 2020;1748:147118.

    Article  CAS  PubMed  Google Scholar 

  15. Chassain C, Bielicki G, Keller C, Renou JP, Durif F. Metabolic changes detected in vivo by 1H MRS in the MPTP-intoxicated mouse. NMR Biomed. 2010;23(6):547–53.

    Article  CAS  PubMed  Google Scholar 

  16. Heo H, Ahn J-B, Lee HH, Kwon E, Yun J-W, Kim H, et al. Neurometabolic profiles of the substantia nigra and striatum of MPTP-intoxicated common marmosets: an in vivo proton MRS study at 9.4 T. NMR Biomed. 2017;30(2):e3686.

    Article  Google Scholar 

  17. Coune PG, Craveiro M, Gaugler MN, Mlynarik V, Schneider BL, Aebischer P, et al. An in vivo ultrahigh field 14.1 T 1H-MRS study on 6-OHDA and alpha-synuclein-based rat models of Parkinson’s disease: GABA as an early disease marker. NMR Biomed. 2013;26(1):43–50.

    Article  CAS  PubMed  Google Scholar 

  18. Kickler N, Lacombe E, Chassain C, Durif F, Krainik A, Farion R, et al. Assessment of metabolic changes in the striatum of a rat model of parkinsonism: an in vivo 1H MRS study. NMR Biomed. 2009;22(2):207–12.

    Article  CAS  PubMed  Google Scholar 

  19. Hou Z, Zhang Z, Meng H, Lin X, Sun B, Lei H, et al. Parkinson’s disease: in vivo metabolic changes in the frontal and parietal cortices in 6-OHDA treated rats during different periods. Int J Neurosci. 2014;124(2):125–32.

    Article  CAS  PubMed  Google Scholar 

  20. Bagga P, Crescenzi R, Krishnamoorthy G, Verma G, Nanga RP, Reddy D, et al. Mapping the alterations in glutamate with GluCEST MRI in a mouse model of dopamine deficiency. J Neurochem. 2016;139(3):432–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ren X, Hinchie A, Swomley A, Powell DK, Butterfield DA. Profiles of brain oxidative damage, ventricular alterations, and neurochemical metabolites in the striatum of PINK1 knockout rats as functions of age and gender: relevance to Parkinson disease. Free Radical Biol Med. 2019;143:146–52.

    Article  CAS  Google Scholar 

  22. Helms G. The principles of quantification applied to in vivo proton MR spectroscopy. Eur J Radiol. 2008;67(2):218–29.

    Article  PubMed  Google Scholar 

  23. Norris JL, Caprioli RM. Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem Rev. 2013;113(4):2309–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schubert KO, Weiland F, Baune BT, Hoffmann P. The use of MALDI-MSI in the investigation of psychiatric and neurodegenerative disorders: a review. Proteomics. 2016;16(11–12):1747–58.

    Article  CAS  PubMed  Google Scholar 

  25. Rzagalinski I, Volmer DA. Quantification of low molecular weight compounds by MALDI imaging mass spectrometry – a tutorial review. Biochim Biophys Acta (BBA) - Proteins Proteom. 2017;1865(7):726–39.

    Article  CAS  Google Scholar 

  26. Linscheid MW. Molecules and elements for quantitative bioanalysis: the allure of using electrospray, MALDI, and ICP mass spectrometry side-by-side. Mass Spectrom Rev. 2019;38(2):169–86.

    Article  CAS  PubMed  Google Scholar 

  27. Wu H, Liu X, Gao Z-Y, Lin M, Zhao X, Sun Y, et al. Icaritin provides neuroprotection in Parkinson’s disease by attenuating neuroinflammation, oxidative stress, and energy deficiency. Antioxidants. 2021;10(4):529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science. 2003;299(5604):256–9.

    Article  CAS  PubMed  Google Scholar 

  29. Andres-Mateos E, Perier C, Zhang L, Blanchard-Fillion B, Greco TM, Thomas B, et al. DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase. Proc Natl Acad Sci USA. 2007;104(37):14807–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Meiser J, Delcambre S, Wegner A, Jager C, Ghelfi J, d’Herouel AF, et al. Loss of DJ-1 impairs antioxidant response by altered glutamine and serine metabolism. Neurobiol Dis. 2016;89:112–25.

    Article  CAS  PubMed  Google Scholar 

  31. Lopert P, Patel M. Brain mitochondria from DJ-1 knockout mice show increased respiration-dependent hydrogen peroxide consumption. Redox Biol. 2014;2:667–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. de Hemptinne C, Chen WT, Racine CA, Seritan AL, Miller AM, Yaroshinsky MS, et al. Prefrontal physiomarkers of anxiety and depression in Parkinson’s disease. Front Neurosci. 2021;15:748165.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. Parkinson disease. Nat Rev Dis Primers. 2017;3:17013.

    Article  PubMed  Google Scholar 

  34. Li M, Xu H, Chen G, Sun S, Wang Q, Liu B, et al. Impaired D2 receptor-dependent dopaminergic transmission in prefrontal cortex of awake mouse model of Parkinson’s disease. Brain. 2019;142(10):3099–115.

    Article  PubMed  Google Scholar 

  35. Chen L, Cagniard B, Mathews T, Jones S, Koh HC, Ding Y, et al. Age-dependent motor deficits and dopaminergic dysfunction in DJ-1 null mice. J Biol Chem. 2005;280(22):21418–26.

    Article  CAS  PubMed  Google Scholar 

  36. Paxinos G, Franklin KBJ. The mouse brain in stereotaxic coordinates. 2nd ed. San Diego: Academic Press; 2003.

  37. Moffett JR, Namboodiri MAA. Differential distribution of N-acetylaspartylglutamate and N-acetylaspartate immunoreactivities in rat forebrain. J Neurocytol. 1995;24(6):409–33.

    Article  CAS  PubMed  Google Scholar 

  38. Moffett JR, Namboodiri MAA, Cangro CB, Neale JH. Immunohistochemical localization of N-acetylaspartate in rat brain. NeuroReport. 1991;2(3):131–4.

    Article  CAS  PubMed  Google Scholar 

  39. Fonnum F. Regulation of the synthesis of the transmitter glutamate pool. Prog Biophys Mol Biol. 1993;60(1):47–57.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang H, Zou Y, Lei H. Regional metabolic differences in rat prefrontal cortex measured with in vivo 1H-MRS correlate with regional histochemical differences. NMR Biomed. 2019;32(1):e4024.

    Article  PubMed  Google Scholar 

  41. O’Neill J, Schuff N, Marks WJ, Feiwell R, Aminoff MJ, Weiner MW. Quantitative 1H magnetic resonance spectroscopy and MRI of Parkinson’s disease. Mov Disord. 2002;17(5):917–27.

    Article  PubMed  Google Scholar 

  42. Harish G, Mahadevan A, Srinivas Bharath MM, Shankar SK. Alteration in glutathione content and associated enzyme activities in the synaptic terminals but not in the non-synaptic mitochondria from the frontal cortex of Parkinson’s disease brains. Neurochem Res. 2012;38(1):186–200.

    Article  PubMed  Google Scholar 

  43. Garrido M, Tereshchenko Y, Zhevtsova Z, Taschenberger G, Bahr M, Kugler S. Glutathione depletion and overproduction both initiate degeneration of nigral dopaminergic neurons. Acta Neuropathol. 2011;121(4):475–85.

    Article  CAS  PubMed  Google Scholar 

  44. Kumar P, Kaundal RK, More S, Sharma SS. Beneficial effects of pioglitazone on cognitive impairment in MPTP model of Parkinson’s disease. Behav Brain Res. 2009;197(2):398–403.

    Article  CAS  PubMed  Google Scholar 

  45. Guzman JN, Sanchez-Padilla J, Wokosin D, Kondapalli J, Ilijic E, Schumacker PT, et al. Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature. 2010;468:696–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Raman AV, Chou VP, Atienza-Duyanen J, Di Monte DA, Bellinger FP, Manning-Boğ AB. Evidence of oxidative stress in young and aged DJ-1-deficient mice. FEBS Lett. 2013;587(10):1562–70.

    Article  CAS  PubMed  Google Scholar 

  47. Takahashi-Niki K, Inafune A, Michitani N, Hatakeyama Y, Suzuki K, Sasaki M, et al. DJ-1-dependent protective activity of DJ-1-binding compound no. 23 against neuronal cell death in MPTP-treated mouse model of Parkinson’s disease. J Pharmacol Sci. 2015;127(3):305–10.

    Article  CAS  PubMed  Google Scholar 

  48. Lev N, Barhum Y, Ben-Zur T, Melamed E, Steiner I, Offen D. Knocking out DJ-1 attenuates astrocytes neuroprotection against 6-hydroxydopamine toxicity. J Mol Neurosci. 2013;50(3):542–50.

    Article  CAS  PubMed  Google Scholar 

  49. González-Polo RA, Niso-Santano M, Morán JM, Ortiz-Ortiz MA, Bravo-San Pedro JM, Soler G, et al. Silencing DJ-1 reveals its contribution in paraquat-induced autophagy. J Neurochem. 2009;109(3):889–98.

    Article  PubMed  Google Scholar 

  50. De Miranda BR, Rocha EM, Bai Q, El Ayadi A, Hinkle D, Burton EA, et al. Astrocyte-specific DJ-1 overexpression protects against rotenone-induced neurotoxicity in a rat model of Parkinson’s disease. Neurobiol Dis. 2018;115:101–14.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Björkblom B, Adilbayeva A, Maple-Grødem J, Piston D, Ökvist M, Xu XM, et al. Parkinson disease protein DJ-1 binds metals and protects against metal-induced cytotoxicity. J Biol Chem. 2013;288(31):22809–20.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Aoyama K, Nakaki T. Impaired glutathione synthesis in neurodegeneration. Int J Mol Sci. 2013;14(10):21021–44.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Dringen R, Gutterer JM, Hirrlinger J. Glutathione metabolism in brain - metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem. 2000;267(16):4912–6.

    Article  CAS  PubMed  Google Scholar 

  54. Bak LK, Schousboe A, Waagepetersen HS. The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem. 2006;98(3):641–53.

    Article  CAS  PubMed  Google Scholar 

  55. Ramírez-García G, Palafox-Sánchez V, Limón ID. Nitrosative and cognitive effects of chronic l-DOPA administration in rats with intra-nigral 6-OHDA lesion. Neuroscience. 2015;290:492–508.

    Article  PubMed  Google Scholar 

  56. Stanojlovic M, Pallais Yllescas JP, Vijayakumar A, Kotz C. Early sociability and social memory impairment in the A53T mouse model of Parkinson’s disease are ameliorated by chemogenetic modulation of orexin neuron activity. Mol Neurobiol. 2019;56(12):8435–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant numbers 21790392 and 21790390).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zongxiu Nie or Hao Lei.

Ethics declarations

Ethics approval

All animal experiments were approved by the Institutional Animal Care and Use Committee of Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (protocol number: APM20028A).

Source of biological material

DJ-1 knockout mice (C57BL/6 J background) were kindly provided by the Experimental Animal Center of Peking University and bred and maintained at the Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences.

Statement of animal welfare

All animal experiments were performed according to the National Institutes of Health (NIH) Guide for the Care and Use of Laboratory Animals. All efforts were made to minimize the number of animals used and their suffering.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Liu, H., Liu, S. et al. Altered prefrontal neurochemistry in the DJ-1 knockout mouse model of Parkinson’s disease: complementary semi-quantitative analyses with in vivo magnetic resonance spectroscopy and MALDI-MSI. Anal Bioanal Chem 414, 7977–7987 (2022). https://doi.org/10.1007/s00216-022-04341-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04341-8

Keywords

Navigation