Skip to main content
Log in

What if using certified reference materials (CRMs) was a requirement to publish in analytical/bioanalytical chemistry journals?

  • Feature Article
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Certified reference materials (CRMs) are routinely used by analytical chemists to validate new analytical methods and to demonstrate the quality of their quantitative measurements. Even though CRMs for trace element and trace organic analysis have been available and widely used for over 50 years, the majority of papers published in analytical chemistry journals do not mention the use of CRMs. What if analytical/bioanalytical chemistry journals required the use of CRMs to publish a paper? This feature article attempts to address this question by providing examples of recent papers that have made exceptional use of CRMs to validate new analytical methods and to describe novel, alternative uses of CRMs that provide new characterization of the CRM. The potential benefits of using a CRM even when it does not have certified values for the analytes of interest are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ulberth F. Certified reference materials for inorganic and organic contaminants in environmental matrices. Anal Bioanal Chem. 2006;386(4):1121–36. https://doi.org/10.1007/s00216-006-0660-6.

    Article  CAS  PubMed  Google Scholar 

  2. Wise SA. From urban dust and marine sediment to Ginkgo biloba and human serum—a top ten list of Standard Reference Materials (SRMs). Anal Bioanal Chem. 2022;414:31–52. https://doi.org/10.1007/s00216-021-03527-w.

    Article  CAS  PubMed  Google Scholar 

  3. Wise SA, Phillips MM. Evolution of reference materials for the determination of organic nutrients in food and dietary supplements—a critical review. Anal Bioanal Chem. 2019;411(1):97–127. https://doi.org/10.1007/s00216-018-1473-0.

    Article  CAS  PubMed  Google Scholar 

  4. Wise SA, Poster DL, Kucklick JR, Keller JM, VanderPol SS, Sander LC, Schantz MM. Standard Reference Materials (SRMs) for determination of organic contaminants in environmental samples. Anal Bioanal Chem. 2006;386(4):1153–90. https://doi.org/10.1007/s00216-006-0719-4.

    Article  CAS  PubMed  Google Scholar 

  5. Zeisler R, Murphy KE, Becker DA, Davis WC, Kelly WR, Long SE, Sieber JR. Standard Reference Materials (R) (SRMs) for measurement of inorganic environmental contaminants. Anal Bioanal Chem. 2006;386(4):1137–51. https://doi.org/10.1007/s00216-006-0785-7.

    Article  CAS  PubMed  Google Scholar 

  6. Phinney KW, Bedner M, Tai SSC, Vamathevan VV, Sander LC, Sharpless KE, Wise SA, Yen JH, Schleicher RL, Chaudhary-Webb M, Pfeiffer CM, Betz JM, Coates PM, Picciano MF. Development and certification of a Standard Reference Material for vitamin D metabolites in human serum. Anal Chem. 2012;84(2):956–62. https://doi.org/10.1021/ac202047n.

    Article  CAS  PubMed  Google Scholar 

  7. Rimmer CA, Sharpless KE, Wise SA, Betz JM, Coates PM. Standard Reference Materials for dietary supplement analysis. Anal Bioanal Chem. 2013;405(13):4337–44. https://doi.org/10.1007/s00216-013-6942-x.

    Article  CAS  PubMed  Google Scholar 

  8. National Bureau of Standards. Standard Reference Material 1571 Orchard Leaves. Washington, DC: National Bureau of Standards; 1971.

    Google Scholar 

  9. Benner BA. Summarizing the effectiveness of supercritical fluid extraction of polycyclic aromatic hydrocarbons from natural matrix environmental samples. Anal Chem. 1998;70(21):4594–601. https://doi.org/10.1021/ac980618f.

    Article  CAS  PubMed  Google Scholar 

  10. Bergvall C, Westerholm R. Determination of 252–302 Da and tentative identification of 316–376 Da polycyclic aromatic hydrocarbons in Standard Reference Materials 1649a Urban Dust and 1650b and 2975 Diesel Particulate Matter by accelerated solvent extraction-HPLC-GC-MS. Anal Bioanal Chem. 2008;391(6):2235–48. https://doi.org/10.1007/s00216-008-2182-x.

    Article  CAS  PubMed  Google Scholar 

  11. Schantz MM, McGaw E, Wise SA. Pressurized liquid extraction of diesel and air particulate Standard Reference Materials: effect of extraction temperature and pressure. Anal Chem. 2012;84(19):8222–31. https://doi.org/10.1021/ac301443v.

    Article  CAS  PubMed  Google Scholar 

  12. Schantz MM, Nichols JJ, Wise SA. Evaluation of pressurized fluid extraction for the extraction of environmental matrix reference materials. Anal Chem. 1997;69(20):4210–9. https://doi.org/10.1021/ac970299c.

    Article  CAS  Google Scholar 

  13. Renkes GD, Walters SN, Woo CS, Iles MK, Dsilva AP, Fassel VA. Determination of aromatic hydrocarbons in particulate samples by high-temperature extraction and Shpol’skii spectrometry. Anal Chem. 1983;55(14):2229–31. https://doi.org/10.1021/ac00264a007.

    Article  CAS  Google Scholar 

  14. Albinet A, Tomaz S, Lestremau F. A really quick easy cheap effective rugged and safe (QuEChERS) extraction procedure for the analysis of particle-bound PAHs in ambient air and emission samples. Sci Total Environ. 2013;450:31–8. https://doi.org/10.1016/j.scitotenv.2013.01.068.

    Article  CAS  PubMed  Google Scholar 

  15. Albinet A, Nalin F, Tomaz S, Beaumont J, Lestremau F. A simple QuEChERS-like extraction approach for molecular chemical characterization of organic aerosols: application to nitrated and oxygenated PAH derivatives (NPAH and OPAH) quantified by GC-NICIMS. Anal Bioanal Chem. 2014;406(13):3131–48. https://doi.org/10.1007/s00216-014-7760-5.

    Article  CAS  PubMed  Google Scholar 

  16. Fassbender S, von der Au M, Koenig M, Pelzer J, Piechotta C, Vogl J, Meermann B. Species-specific isotope dilution analysis of monomethylmercury in sediment using GC/ICP-ToF-MS and comparison with ICP-Q-MS and ICP-SF-MS. Anal Bioanal Chem. 2021;413(21):5279–89. https://doi.org/10.1007/s00216-021-03497-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tibon J, Silva M, Sloth JJ, Amlund H, Sele V. Speciation analysis of organoarsenic species in marine samples: method optimization using fractional factorial design and method validation. Anal Bioanal Chem. 2021;413(15):3909–23. https://doi.org/10.1007/s00216-021-03341-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wolle MM, Conklin SD. Speciation analysis of arsenic in seafood and seaweed: part I—evaluation and optimization of methods. Anal Bioanal Chem. 2018;410(22):5675–87. https://doi.org/10.1007/s00216-018-0906-0.

    Article  CAS  PubMed  Google Scholar 

  19. Wolle MM, Conklin SD. Speciation analysis of arsenic in seafood and seaweed: part II—single laboratory validation of method. Anal Bioanal Chem. 2018;410(22):5689–702. https://doi.org/10.1007/s00216-018-0910-4.

    Article  CAS  PubMed  Google Scholar 

  20. Gladney ES, Burns CE, Perrin DR, Roelandts I, Gills TE. 1982 Compilation of elemental concentration data for NBS biological, geological, and environmental Standard Reference Materials, vol NBS Special Publication 260–88. NBS Special Publication. Gaithersburg, MD, 1984.

  21. Gladney ES, O’Malley BT, Roelandts I, Gills TE. Compilation of elemental concnetration data for NBS clinical, biological, geological, and environmental Standard Reference Materials, NBS Special Publication 260–111. U.S. Governemnt Printing Office, Washington, DC, Gaithersburg, MD, 1987.

  22. Gladney ES, Roelandts I, Gills TE. Compilation of elemental concnetration data for NBS clinical, biological, geological and environmental Standard Reference Materials Supplement 1. 1993.

  23. Roelandts I, Gladney ES. Consensus values for NIST biological and environmental Standard Reference Materials. Fresenius J Anal Chem. 1998;360(3–4):327–38. https://doi.org/10.1007/s002160050704.

    Article  CAS  Google Scholar 

  24. Zhu LY, Hites RA. Determination of polybrominated diphenyl ethers in environmental standard reference materials. Anal Chem. 2003;75(23):6696–700. https://doi.org/10.1021/ac034643j.

    Article  CAS  PubMed  Google Scholar 

  25. Stapleton HM, Keller JM, Schantz MM, Kucklick JR, Leigh SD, Wise SA. Determination of polybrominated diphenyl ethers in environmental standard reference materials. Anal Bioanal Chem. 2007;387(7):2365–79. https://doi.org/10.1007/s00216-006-1054-5.

    Article  CAS  PubMed  Google Scholar 

  26. Rodowa A, Reiner JL. Utilization of a NIST SRM: a case study for per- and polyfluoroalkyl sustances in NIST SRM 1957 organic contaminants in non-fortified human serum. Anal Bioanal Chem. 2021;413:2295–301.

    Article  CAS  Google Scholar 

  27. Schantz MM, Eppe G, Focant JF, Hamilton C, Heckert NA, Heltsley RM, Hoover D, Keller JM, Leigh SD, Patterson DG, Pintar AL, Sharpless KE, Sjodin A, Turner WE, Vander Pol SS, Wise SA. Milk and serum Standard Reference Materials for monitoring organic contaminants in human samples. Anal Bioanal Chem. 2013;405(4):1203–11. https://doi.org/10.1007/s00216-012-6524-3.

    Article  CAS  PubMed  Google Scholar 

  28. Ghetu CC, Scott RP, Wilson G, Liu-May R, Anderson KA. Improvements in identification and quantitation of alkylated PAHs and forensic ratio sourcing. Anal Bioanal Chem. 2021;413(6):1651–64. https://doi.org/10.1007/s00216-020-03127-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kellogg JJ, Graf TN, Paine MF, McCune JS, Kvalheim OM, Oberlies NH, Cech NB. Comparison of metabolomics approaches for evaluating the variability of complex botanical preparations: green tea (Camellia sinensis) as a case study. J Nat Prod. 2017;80(5):1457–66. https://doi.org/10.1021/acs.jnatprod.6b01156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Clark TN, Houriet J, Vidar WS, Kellogg JJ, Todd DA, Cech NB, Linington RG. Interlaboratory comparison of untargeted mass spectrometry data uncovers underlying causes for variability. J Nat Prod. 2021;84(3):824–35. https://doi.org/10.1021/acs.jnatprod.0c01376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Geng P, Chen P, Sun J, McCoy JAH, Harnly JM. Authentication of black cohosh (Actaea racemosa) dietary supplements based on chemometric evaluation of hydroxycinnamic acid esters and hydroxycinnamic acid amides. Anal Bioanal Chem. 2019;411(27):7147–56. https://doi.org/10.1007/s00216-019-02082-9.

    Article  CAS  PubMed  Google Scholar 

  32. Geng P, Harnly JM, Sun JH, Zhang ML, Chen P. Feruloyl dopamine-O-hexosidesare efficient marker compounds as orthogonal validation for authentication of black cohosh (Actaea racemosa)—an UHPLC-HRAM-MS chemometrics study. Anal Bioanal Chem. 2017;409(10):2591–600. https://doi.org/10.1007/s00216-017-0205-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Collins BJ, Kerns SP, Aillon K, Mueller G, Rider CV, DeRose EF, London RE, Harnly JM, Waidyanatha S. Comparison of phytochemical composition of Ginkgo biloba extracts using a combination of non-targeted and targeted analytical approaches. Anal Bioanal Chem. 2020;412(25):6789–809. https://doi.org/10.1007/s00216-020-02839-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hosbas Coskun S, Wise SA, Kuszak AJ. The importance of reference materials and method validation for advancing research on the health effects of dietary supplements and other natural products. Front Nutr. 2021;8. https://doi.org/10.3389/fnut.2021.786261.

  35. Phinney KW, Ballihaut G, Bedner M, Benford BS, Camara JE, Christopher SJ, Davis WC, Dodder NG, Eppe G, Lang BE, Long SE, Lowenthal MS, McGaw EA, Murphy KE, Nelson BC, Prendergast JL, Reiner JL, Rimmer CA, Sander LC, Schantz MM, Sharpless KE, Sniegoski LT, Tai SSC, Thomas JB, Vetter TW, Welch MJ, Wise SA, Wood LJ, Guthrie WF, Hagwood CR, Leigh SD, Yen JH, Zhang NF, Chaudhary-Webb M, Chen HP, Fazili Z, LaVoie DJ, McCoy LF, Momin SS, Paladugula N, Pendergrast EC, Pfeiffer CM, Powers CD, Rabinowitz D, Rybak ME, Schleicher RL, Toombs BMH, Xu M, Zhang M, Castle AL. Development of a Standard Reference Material for metabolomics research. Anal Chem. 2013;85(24):11732–8. https://doi.org/10.1021/ac402689t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wolrab D, Chocholouskova M, Jirasko R, Peterka O, Holcapek M. Validation of lipidomic analysis of human plasma and serum by supercritical fluid chromatography-mass spectrometry and hydrophilic interaction liquid chromatography-mass spectrometry. Anal Bioanal Chem. 2020;412(10):2375–88. https://doi.org/10.1007/s00216-020-02473-3.

    Article  CAS  PubMed  Google Scholar 

  37. Aristizabal-Henao JJ, Jones CM, Lippa KA, Bowden JA. Nontargeted lipidomics of novel human plasma reference materials: hypertriglyceridemic, diabetic, and African-American. Anal Bioanal Chem. 2020;412(27):7373–80. https://doi.org/10.1007/s00216-020-02910-3.

    Article  CAS  PubMed  Google Scholar 

  38. Vaňková Z, Peterka O, Chocholoušková M, Wolrab D, Jirásko R, Holčapek M. Retention dependences support highly confident identification of lipid species in human plasma by reversed-phase UHPLC/MS. Anal Bioanal Chem. 2022;414(1):319–31. https://doi.org/10.1007/s00216-021-03492-4.

    Article  CAS  PubMed  Google Scholar 

  39. White JB, Trim PJ, Salagaras T, Long A, Psaltis PJ, Verjans JW, Snel MF. Equivalent carbon number and interclass retention time conversion enhance lipid identification in untargeted clinical lipidomics. Anal Chem. 2022. https://doi.org/10.1021/acs.analchem.1c03770.

    Article  PubMed  PubMed Central  Google Scholar 

  40. He XB, Li ZC, Zhang QB. A UPLC-MRM-MS method for comprehensive profiling of Amadori compound-modified phosphatidylethanolamines in human plasma. Anal Bioanal Chem. 2021;413(2):431–43. https://doi.org/10.1007/s00216-020-03012-w.

    Article  CAS  PubMed  Google Scholar 

  41. Schoeny H, Rampler E, El Abiead Y, Hildebrand F, Zach O, Hermann G, Koellensperger G. A combined flow injection/reversed-phase chromatography-high-resolution mass spectrometry workflow for accurate absolute lipid quantification with C-13 internal standards. Analyst. 2021;146(8):2591–9. https://doi.org/10.1039/d0an02443k.

    Article  CAS  PubMed  Google Scholar 

  42. Schoeny H, Rampler E, Hermann G, Grienke U, Rollinger JM, Koellensperger G. Preparative supercritical fluid chromatography for lipid class fractionation—a novel strategy in high-resolution mass spectrometry based lipidomics. Anal Bioanal Chem. 2020;412(10):2365–74. https://doi.org/10.1007/s00216-020-02463-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bowden JA, Heckert A, Ulmer CZ, Jones CM, Koelmel JP, Abdullah L, Ahonen L, Alnouti Y, Armando AM, Asara JM, Bamba T, Barr JR, Bergquist J, Borchers CH, Brandsma J, Breitkopf SB, Cajka T, Cazenave-Gassiot A, Checa A, Cinel MA, Colas RA, Cremers S, Dennis EA, Evans JE, Fauland A, Fiehn O, Gardner MS, Garrett TJ, Gotlinger KH, Han J, Huang YY, Neo AHP, Hyotylainen T, Izumi Y, Jiang HF, Jiang HL, Jiang J, Kachman M, Kiyonami R, Klavins K, Klose C, Kofeler HC, Kolmert J, Koal T, Koster G, Kuklenyik Z, Kurland IJ, Leadley M, Lin K, Maddipati KR, McDougall D, Meikle PJ, Mellett NA, Monnin C, Moseley MA, Nandakumar R, Oresic M, Patterson R, Peake D, Pierce JS, Post M, Postle AD, Pugh R, Qiu YP, Quehenberger O, Ramrup P, Rees J, Rembiesa B, Reynaud D, Roth MR, Sales S, Schuhmann K, Schwartzman ML, Serhan CN, Shevchenko A, Somerville SE, John-Williams LS, Surma MA, Takeda H, Thakare R, Thompson JW, Torta F, Triebl A, Trotzmuller M, Ubhayasekera SJK, Vuckovic D, Weir JM, Welti R, Wenk MR, Wheelock CE, Yao LB, Yuan M, Zhao XQH, Zhou SL. Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950-Metabolites in Frozen Human Plasma. J Lipid Res. 2017;58(12):2275–88. https://doi.org/10.1194/jlr.M079012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ulmer CZ, Ragland JM, Koelmel JP, Heckert A, Jones CM, Garrett TJ, Yost RA, Bowden JA. LipidQC: method validation tool for visual comparison to SRM 1950 using NIST interlaboratory comparison exercise lipid consensus mean estimate values. Anal Chem. 2017;89(24):13069–73. https://doi.org/10.1021/acs.analchem.7b04042.

    Article  CAS  PubMed  Google Scholar 

  45. Ghorasaini M, Mohammed Y, Adamski J, Bettcher L, Bowden JA, Cabruja M, Contrepois K, Ellenberger M, Gajera B, Haid M, Hornburg D, Hunter C, Jones CM, Klein T, Mayboroda O, Mirzaian M, Moaddel R, Ferrucci L, Lovett J, Nazir K, Pearson M, Ubhi BK, Raftery D, Riols F, Sayers R, Sijbrands EJG, Snyder MP, Su BL, Velagapudi V, Williams KJ, de Rijke YB, Giera M. Cross-laboratory standardization of preclinical lipidomics using differential mobility spectrometry and multiple reaction monitoring. Anal Chem. 2021;93(49):16369–78. https://doi.org/10.1021/acs.analchem.1c02826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Thompson JW, Adams KJ, Adamski J, Asad Y, Borts D, Bowden JA, Byram G, Dang V, Dunn WB, Fernandez F, Fiehn O, Gaul DA, Huhmer AFR, Kalli A, Koal T, Koeniger S, Mandal R, Meier F, Naser FJ, O’Neil D, Pal A, Patti GJ, Hai PT, Prehn C, Raynaud FI, Shen T, Southam AD, St John-Williams L, Sulek K, Vasilopoulou CG, Viant M, Winder CL, Wishart D, Zhang L, Zheng JM, Moseley MA. International ring trial of a high resolution targeted metabolomics and lipidomics platform for serum and plasma analysis. Anal Chem. 2019;91(22):14407–16. https://doi.org/10.1021/acs.analchem.9b02908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Siskos AP, Jain P, Romisch-Margl W, Bennet M, Achaintre D, Asad Y, Marney L, Richardson L, Koulman A, Griffin JL, Raynaud F, Scalbert A, Adamski J, Prehn C, Keun HC. Interlaboratory reproducibility of a targeted metabolomics platform for analysis of human serum and plasma. Anal Chem. 2017;89(1):656–65. https://doi.org/10.1021/acs.analchem.6b02930.

    Article  CAS  PubMed  Google Scholar 

  48. Kirkwood KI, Christopher MW, Burgess JL, Littau SR, Foster K, Richey K, Pratt BS, Shulman N, Tamura K, MacCoss MJ, MacLean BX, Baker ES. Development and application of multidimensional lipid libraries to investigate lipidomic dysregulation related to smoke inhalation injury severity. J Proteome Res. 2022;21(1):232–42. https://doi.org/10.1021/acs.jproteome.1c00820.

    Article  CAS  PubMed  Google Scholar 

  49. Aristizabal-Henao JJ, Lemas DJ, Griffin FK, Costa KA, Camacho C, Bowden JA. Metabolomic profiling of biological reference materials using a multiplatform high-resolution mass spectrometric approach. J Am Soc Mass Spectrom. 2021;32(9):2481–9. https://doi.org/10.1021/jasms.1c00194.

    Article  CAS  PubMed  Google Scholar 

  50. Edwards ME, Marasco CA, Schock TB, Sobreira TJP, Ferreira CR, Cooks RG. Exploratory analysis using MRM profiling mass spectrometry of a candidate metabolomics sample for testing system suitability. Int J Mass Spectrom. 2021;468. https://doi.org/10.1016/j.ijms.2021.116663.

  51. Mandal R, Cano R, Davis CD, Hayashi D, Jackson SA, Jones CM, Lampe JW, Latulippe ME, Lin NJ, Lippa KA, Piotrowski P, Da Silva SM, Swanson KS, Wishart DS. Workshop report: toward the development of a human whole stool reference material for metabolomic and metagenomic gut microbiome measurements. Metabolomics. 2020;16(11). https://doi.org/10.1007/s11306-020-01744-5.

  52. Lippa KA, Aristizabal-Henao JJ, Beger RD, Bowden JA, Broeckling C, Beecher C, Davis WC, Dunn WB, Flores R, Goodacre R, Gouveia GJ, Harms AC, Hartung T, Jones CM, Lewis MR, Ntai I, Percy AJ, Raftery D, Schock TB, Sun JC, Theodoridis G, Tayyari F, Torta F, Ulmer CZ, Wilson I, Ubhi BK. Reference materials for MS-based untargeted metabolomics and lipidomics: a review by the metabolomics quality assurance and quality control consortium (mQACC). Metabolomics. 2022;18(4). https://doi.org/10.1007/s11306-021-01848-6.

  53. Garrigues P, Bellocq J, Wise SA. Determination of methylbenzo[a]pyrene isomers in a coal tar Standard Reference Material using liquid chromatography and Shpolskii spectrometry. Fresenius J Anal Chem. 1990;336(2):106–10. https://doi.org/10.1007/bf00322546.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen A. Wise.

Ethics declarations

Competing interests

S. A. Wise is an editor of the journal Analytical and Bioanalytical Chemistry and was not involved in peer reviewing of this manuscript. The author is Scientist Emeritus at the National Institute of Standards and Technology (NIST), which is a producer of certified reference materials. 

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wise, S.A. What if using certified reference materials (CRMs) was a requirement to publish in analytical/bioanalytical chemistry journals?. Anal Bioanal Chem 414, 7015–7022 (2022). https://doi.org/10.1007/s00216-022-04163-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04163-8

Keywords

Navigation