Skip to main content
Log in

Determination of 252–302 Da and tentative identification of 316–376 Da polycyclic aromatic hydrocarbons in Standard Reference Materials 1649a Urban Dust and 1650b and 2975 Diesel Particulate Matter by accelerated solvent extraction–HPLC-GC-MS

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We have assessed and compared the extraction recoveries of polycyclic aromatic hydrocarbons (PAHs) with molecular weights of 252, 276, 278, 300 and 302 from diesel particulate matter (PM) and urban air particles using ultrasonically assisted extraction and accelerated solvent extraction methods, and evaluated the effects of sample and treatment parameters. The results show that accelerated solvent extraction can extract PAHs more efficiently from diesel PM than ultrasonically assisted extraction. They also show that PAHs are more difficult to extract from diesel PM than from urban air particles. Using toluene and maximum instrumental settings (200 °C, 3,000 psi and five extraction cycles) with 30-min static extraction times > 85% of the analytes were estimated to be extracted from the diesel particles, but four extraction cycles with just 5-min static extraction times under these conditions seem to be sufficient to extract > 95% of the analytes from the urban air particles. The accelerated solvent extraction method was validated using the Standard Reference Materials (SRM) 1649a, Urban Dust, and SRM 2975 and SRM 1650a, Diesel Particulate Matter, from the US National Institute of Standards and Technology (NIST). PAH concentrations determined by on-line high-performance liquid chromatography–gas chromatography–mass spectrometry (HPLC-GC-MS) following the developed accelerated solvent extraction method were generally higher than the certified and reference NIST values and concentrations reported in the literature (e.g. the estimated concentration of benzo[a]pyrene in SRM 2975 was 15-fold higher than the NIST-certified value), probably because the extraction recoveries were higher than in previous studies. The developed accelerated solvent extraction method was used to analyse high molecular (HMW) weight PAHs (MW > 302) in the investigated SRMs, and more than 170 (SRM 1649a), 80 (SRM 1650b) and 60 (SRM 2975) potential high molecular weight PAHs were tentatively identified in them, with molecular weights (depending on the SRM sample analysed) of 316, 326, 328, 340, 342, 350, 352, 366, 374 and 376. This is, to our knowledge, the first study to tentatively report PAHs with molecular weights of 316, 326, 328, 342, 350, 352, 366 and 376 in diesel particulate matter. GC-MS chromatograms obtained in selected ion monitoring mode (extracted ions for the abovementioned m/z) and full-scan mass spectra of tentatively identified high molecular weight PAHs are shown in the Electronic supplementary material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sehlstedt M, Forsberg B, Westerholm R, Boman C, Sandström T (2007) The role of particle size and chemical composition for health risks of exposure to traffic related aerosols - a review of the current literature, Swedish road administration report. http://www.vv.se/fudinfoexternwebb/pages/PublikationVisa.aspx?PublikationId=310. Accessed 16 May 2008

  2. Bernstein J, Alexis N, Barnes C, Bernstein I, Nel A, Peden D, Diaz-Sanches D, Tarlo S, Williams P (2004) J Allergy Clin Immunol 114:1116–1123

    Article  Google Scholar 

  3. Künzli N, Kaiser R, Medina S, Studnicka M, Chanel O, Filliger P, Herry M, Horak Jr F, Puybonnieux-Texier V, Quénel P, Schneider J, Seethaler R, Vergnaud J-C, Sommer H (2000) Lancet 356:795–801

    Article  Google Scholar 

  4. Peters A, Dockery D, Muller J, Mittleman M (2001) Circulation 103:2810–2815

    CAS  Google Scholar 

  5. Rojas-Martinez R, Perez-Padilla R, Olaiz-Fernandez G, Mendoza-Alvarado L, Moreno-Macias H, Fortoul T, McDonnell W, Loomis D, Romieu I (2007) Am J Respir Crit Care Med 176:377–384

    Article  CAS  Google Scholar 

  6. Pope C, Burnett R, Thun M, Calle E, Krewski D, Ito K, Thurston G (2002) JAMA 287:1132–1141

    Article  CAS  Google Scholar 

  7. Brunekreef B, Holgate S (2002) Lancet 360:1233–1242

    Article  CAS  Google Scholar 

  8. Commission of the European Communities (2005) Commission staff working paper, annex to the communication on thematic strategy on air pollution and the directive on ambient air quality and cleaner air for Europe, impact assessment, Brussels, September 2005. http://ec.europa.eu/environment/archives/air/cafe/pdf/ia_report_en050921_final.pdf Accessed 16 May 2008

  9. Diaz-Sanchez D, Riedl M (2005) Am J Physiol Lung Cell Mol Physiol 289:722–723

    Article  Google Scholar 

  10. Sydbom A, Blomberg A, Parnia S, Stenfors N, Sandström T, Dahlén S-E (2001) Eur Respir J 17:733–746

    Article  CAS  Google Scholar 

  11. Mauderly J (2001) Toxicol Sci 62:6–9

    Article  CAS  Google Scholar 

  12. US Environmental Protection Agency (EPA) (2002) Health assessment document for diesel engine exhaust, prepared by the National Center for Environmental Assessment, Washington DC, for the Office of Transportation and Air Quality, EPA/600/8-90/057F. Available from the National Technical Information Service, Springfield, VA, PB2002-107661 and http://www.epa.gov/ncea

  13. Singh P, DeMarini D, Dick C, Tabor D, Ryan J, Linak W, Kobayashi T, Gilmour M (2004) Environ Health Perspect 112:820–825

    CAS  Google Scholar 

  14. IARC (1989) Monographs on the evaluation of carcinogenic risks of chemicals to humans: diesel and gasoline engine exhausts and some nitro-PAH. International Agency for Research on Cancer (IARC), Lyon

    Google Scholar 

  15. Boström C-E, Gerde P, Hanberg A, Jernström B, Johansson C, Kyrklund T, Rannug A, Törnqvist M, Victorin K, Westerholm R (2002) Environ Health Perspect Suppl 110:451–488

    Google Scholar 

  16. Straif K, Baan R, Grosse Y, Secretan B, El Ghissassi F, Cogliano V (2005) Lancet Oncol 6:931–932

    Article  Google Scholar 

  17. EUROPA (2006) http://ec.europa.eu/environment/air/quality/standards.htm. Accessed 15 May 2008

  18. US Department of Health and Human Services (2005) Polycyclic aromatic hydrocarbons: 15 listings. Eleventh report on carcinogens, 2005 http://ntp.niehs.nih.gov/ntp/roc/eleventh/profiles/s150pah.pdf. Accessed 15 May 2008

  19. Cavalieri E, Higginbotham S, RamaKrishna N, Devanesan P, Todorovic R, Rogan E, Salmasi S (1991) Carcinogenesis 12:1939–1944

    Article  CAS  Google Scholar 

  20. Platt K, Dienes H, Tommasone M, Luch A (2004) Chem-Biol Interact 148:27–36

    Google Scholar 

  21. World Health Organization (2000) Air quality guidelines for Europe, 2nd edn. WHO regional publications, Copenhagen, European series No 91

  22. Bergvall C, Westerholm R (2007) Environ Sci Technol 41(3):731–737

    Article  CAS  Google Scholar 

  23. Collins J, Brown J, Alexeeff G, Salmon A (1998) Regul Toxicol Pharmacol 28:45–54

    Article  CAS  Google Scholar 

  24. Pineiro-Iglesias M, Lopez-Mahia P, Vazquez-Blanco E, Muniategui-Lorenzo S, Prada-Rodriguez D (2002) Polycyclic Aromat Compd 22:129–146

    Article  CAS  Google Scholar 

  25. Christensen A, Östman C, Westerholm R (2005) Anal Bioanal Chem 381:1206–1216

    Article  CAS  Google Scholar 

  26. Bergvall C, Westerholm R (2006) Anal Bioanal Chem 384:438–447

    Article  CAS  Google Scholar 

  27. Schantz M, Nichols J, Wise S (1997) Anal Chem 69:4210–4219

    Article  CAS  Google Scholar 

  28. Wise S, Poster D, Kucklick J, Keller J, VanderPol S, Sander L, Schantz M (2006) Anal Bioanal Chem 386:1153–1190

    Article  CAS  Google Scholar 

  29. Turrio-Baldassarri L, Battistelli C, Iamiceli A (2003) Anal Bioanal Chem 375:589–595

    CAS  Google Scholar 

  30. Richter B, Jones B, Ezzell J, Porter N, Avdalovic N, Pohl C (1996) Anal Chem 68:1033–1039

    Article  CAS  Google Scholar 

  31. Schantz M (2006) Anal Bioanal Chem 386:1043–1047

    Article  CAS  Google Scholar 

  32. Nguyen T, Ball W (2006) Environ Sci Technol 40:2958–2964

    Article  CAS  Google Scholar 

  33. Nguyen T, Sabbah I, Ball W (2004) Environ Sci Technol 38:3595–3603

    Article  CAS  Google Scholar 

  34. NIST (2000) Certificate of analysis for SRM 2975. Diesel Particulate Matter (Industrial Forklift). National Institute of Standards and Technology, Gaithersburg, USA

  35. NIST (2006) Certificate of analysis for SRM 1650b. Diesel Particulate Matter. National Institute of Standards and Technology, Gaithersburg, USA

  36. Marvin C, Smith R, Bryant D, McCarry B (1999) J Chromatogr A 863:13–24

    Article  CAS  Google Scholar 

  37. Bergvall C, Elfver L, Westerholm R (2006) Report series in aerosol science No 83, NOSA 2006 aerosol symposium, combined with the X Finnish national aerosol symposium, Finnish-Czech aerosol symposium, and BACCI workshop, Helsinki, Finland, 8–10 November, pp 33–35, ISBN 952–5027–76–7

  38. Riddle S, Jakober C, Robert M, Cahill T, Charles M, Kleeman M (2007) Atmos Environ 41:8658–8668

    Article  CAS  Google Scholar 

  39. NIST (2001) Certificate of analysis for SRM 1649a. Urban Dust. National Institute of Standards and Technology, Gaithersburg, USA

  40. Schubert P, Schantz M, Sander L, Wise S (2003) Anal Chem 75:234–246

    Article  CAS  Google Scholar 

  41. Yagoh H, Murayama H, Suzuki T, Tominaga Y, Shibuya N, Masuda Y (2006) Anal Sci 22:583–590

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the skilful laboratory assistance provided by Lena Elfver and the comments provided by Silvia Masala. This study was financed by Stockholm University and the Swedish Emission Research Programme (Emissionsforskningsprogrammet, EMFO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Westerholm.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 3.01 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergvall, C., Westerholm, R. Determination of 252–302 Da and tentative identification of 316–376 Da polycyclic aromatic hydrocarbons in Standard Reference Materials 1649a Urban Dust and 1650b and 2975 Diesel Particulate Matter by accelerated solvent extraction–HPLC-GC-MS. Anal Bioanal Chem 391, 2235–2248 (2008). https://doi.org/10.1007/s00216-008-2182-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2182-x

Keywords

Navigation