Skip to main content
Log in

Nanomaterial-based aptamer biosensors for ochratoxin A detection: a review

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Ochratoxin A (OTA) is a widely distributed mycotoxin that often contaminates food, grains and animal feed. It poses a serious threat to human health because of its high toxicity and persistence. Therefore, the development of an inexpensive, highly sensitive, accurate and rapid method for OTA detection is imperative. In recent years, various nanomaterials used in the establishment of aptasensors have attracted great attention due to their large surface-to-volume ratio, good stability and facile preparation. This review summarizes the development of nanomaterial-based aptasensors for OTA determination and sample treatment over the past 5 years. The nanomaterials used in OTA aptasensors include metal, carbon, luminescent, magnetic and other nanomaterials. Finally, the limitations and future challenges in the development of nanomaterial-based OTA aptasensors are reviewed and discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liu C, Guo Y, Luo F, Rao P, Fu C, Wang S. Homogeneous electrochemical method for Ochratoxin A determination based on target triggered aptamer hairpin switch and exonuclease III-assisted recycling amplification. Food Anal Methods. 2016;10(6):1982–1990.

    Article  Google Scholar 

  2. Cheng L, Qu H, Teng J, Yao L, Xue F, Chen W. Extraordinary tunable dynamic range of electrochemical aptasensor for accurate detection of ochratoxin A in food samples. Food Sci Human Wellness. 2017;6(2):70–76.

    Article  Google Scholar 

  3. Wei M, Zhang W. The determination of Ochratoxin A based on the electrochemical aptasensor by carbon aerogels and methylene blue assisted signal amplification. Chem Cent J. 2018;12(1):45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jiang C, Lan L, Yao Y, Zhao F, Ping J. Recent progress in application of nanomaterial-enabled biosensors for ochratoxin A detection. TrAC Trends Anal Chem. 2018;102:236–249.

    Article  CAS  Google Scholar 

  5. Wu K, Ma C, Zhao H, He H, Chen H. Label-free G-Quadruplex aptamer fluorescence assay for Ochratoxin A using a Thioflavin T probe. Toxins (Basel). 2018;10(5):198.

  6. Somerson J, Plaxco KW. Electrochemical aptamer-based sensors for rapid point-of-use monitoring of the mycotoxin Ochratoxin A directly in a food stream. Molecules. 2018;23(4):912.

  7. Mishra RK, Hayat A, Catanante G, Istamboulie G, Marty J-L. Sensitive quantitation of Ochratoxin A in cocoa beans using differential pulse voltammetry based aptasensor. Food Chem. 2016;192:799–804.

    Article  CAS  PubMed  Google Scholar 

  8. Mazaafrianto DN, Ishida A, Maeki M, Tani H, Tokeshi M. Label-free electrochemical sensor for ochratoxin A using a microfabricated electrode with immobilized aptamer. ACS Omega. 2018;3(12):16823–16830.

    Article  CAS  Google Scholar 

  9. Commission E. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off J Eur Union. 2006;364:5–24.

  10. Bueno D, Istamboulie G, Muñoz R, Marty JL. Determination of mycotoxins in food: a review of bioanalytical to analytical methods. Appl Spectrosc Rev. 2015;50(9):728–74.

    Article  CAS  Google Scholar 

  11. Goud KY, Reddy KK, Satyanarayana M, Kummari S, Gobi KV. A review on recent developments in optical and electrochemical aptamer-based assays for mycotoxins using advanced nanomaterials. Microchim Acta. 2020;187(1):1–32.

    Article  Google Scholar 

  12. Zhang G, Zhu C, Huang Y, Yan J, Chen A. A lateral flow strip based aptasensor for detection of ochratoxin A in corn samples. Molecules. 2018;23(2):291.

    Article  CAS  PubMed Central  Google Scholar 

  13. Zhang X, Wang Z, Xie H, Sun R, Cao T, Paudyal N, et al. Development of a magnetic nanoparticles-based screen-printed electrodes (MNPs-SPEs) biosensor for the quantification of ochratoxin A in cereal and feed samples. Toxins. 2018;10(8):317.

    Article  PubMed Central  Google Scholar 

  14. Goud KY, Reddy KK, Satyanarayana M, Kummari S, Gobi KV. A review on recent developments in optical and electrochemical aptamer-based assays for mycotoxins using advanced nanomaterials. Mikrochim Acta. 2019;187(1):29.

    Article  PubMed  Google Scholar 

  15. Zhang G, Zhu C, Huang Y, Yan J, Chen A. A lateral flow strip based Aptasensor for detection of Ochratoxin A in corn samples. Molecules 2018;23(2):291.

  16. Badie Bostan H, Danesh NM, Karimi G, Ramezani M, Mousavi Shaegh SA, Youssefi K, et al. Ultrasensitive detection of ochratoxin A using aptasensors. Biosens Bioelectron. 2017;98:168–179.

    Article  CAS  PubMed  Google Scholar 

  17. Sun H, Zu Y. A highlight of recent advances in aptamer technology and its application. Molecules. 2015;20(7):11959–11980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guan B, Zhang X. Aptamers as versatile ligands for biomedical and pharmaceutical applications. Int J Nanomedicine. 2020;15:1059–1071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Song S-H, Gao Z-F, Guo X, Chen G-H. Aptamer-based detection methodology studies in food safety. Food Anal Methods. 2019;12(4):966–990.

    Article  Google Scholar 

  20. Huang R, Xi Z, He N. Applications of aptamers for chemistry analysis, medicine and food security. Science China Chem. 2015;58(7):1122–1130.

    Article  CAS  Google Scholar 

  21. Dolez PI. Nanomaterials definitions, classifications, and applications. Nanoengineering. 2015: 3–40.

  22. Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW. Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot. 2012;35:64–70.

    Article  CAS  Google Scholar 

  23. Sharma N, Ojha H, Bharadwaj A, Pathak DP, Sharma RK. Preparation and catalytic applications of nanomaterials: a review. RSC Adv. 2015;5(66):53381–53403.

    Article  CAS  Google Scholar 

  24. Lan L, Yao Y, Ping J, Ying Y. Recent Progress in nanomaterial-based optical aptamer assay for the detection of food chemical contaminants. ACS Appl Mater Interfaces. 2017;9(28):23287–23301.

    Article  CAS  PubMed  Google Scholar 

  25. Goryacheva IYJTiAC. Nanosized labels for rapid immunotests. 2013;46:30–43.

    Google Scholar 

  26. Huang X, Aguilar ZP, Xu H, Lai W, Xiong Y. Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: a review. Biosens Bioelectron. 2016;75:166–180.

    Article  CAS  PubMed  Google Scholar 

  27. Jiang P, Wang Y, Zhao L, Ji C, Chen D, Nie L. Applications of gold nanoparticles in non-optical biosensors. Nanomaterials (Basel). 2018;8(12):977.

  28. Khan AK, Rashid R, Murtaza G, Zahra A. Gold nanoparticles: synthesis and applications in drug delivery. Trop J Pharm Res. 2014;13(7):1169-1177.

  29. Elahi N, Kamali M, Baghersad MH. Recent biomedical applications of gold nanoparticles: a review. Talanta. 2018;184:537–556.

    Article  CAS  PubMed  Google Scholar 

  30. Xu X, Xu C, Ying Y. Aptasensor for the simple detection of ochratoxin A based on side-by-side assembly of gold nanorods. RSC Adv. 2016;6(56):50437–50443.

    Article  CAS  Google Scholar 

  31. Luo X, Morrin A, Killard AJ, Smyth MR. Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis. 2006;18(4):319–326.

    Article  CAS  Google Scholar 

  32. Zhang J, Yang K, Chen L. In situ deposition of silver nanoparticles on Polydopamine Nanospheres for an ultrasensitive electrochemical Aptasensor of Ochratoxin A. J Electrochem Soc. 2019;166(6):H182–H186.

    Article  CAS  Google Scholar 

  33. He Y, Tian F, Zhou J, Jiao B. A fluorescent aptasensor for ochratoxin A detection based on enzymatically generated copper nanoparticles with a polythymine scaffold. Mikrochim Acta. 2019;186(3):199.

    Article  PubMed  Google Scholar 

  34. Camacho-Flores BA, Martínez-Álvarez O, Arenas-Arrocena MC, Garcia-Contreras R, Argueta-Figueroa L, de la Fuente-Hernández J, et al. Copper: synthesis techniques in nanoscale and powerful application as an antimicrobial agent. J Nanomater. 2015;2015:1–10.

    Article  Google Scholar 

  35. Abnous K, Danesh NM, Alibolandi M, Ramezani M, Taghdisi SM. Amperometric aptasensor for ochratoxin A based on the use of a gold electrode modified with aptamer, complementary DNA, SWCNTs and the redox marker methylene blue. Microchim Acta. 2017;184(4):1151–1159.

    Article  CAS  Google Scholar 

  36. Liu B, Wu F, Gui H, Zheng M, Zhou C. Chirality-controlled synthesis and applications of Single-Wall carbon nanotubes. ACS Nano. 2017;11(1):31–53.

    Article  CAS  PubMed  Google Scholar 

  37. Lv L, Cui C, Liang C, Quan W, Wang S, Guo Z. Aptamer-based single-walled carbon nanohorn sensors for ochratoxin A detection. Food Control. 2016;60:296–301.

    Article  CAS  Google Scholar 

  38. Zhu S, Xu G. Single-walled carbon nanohorns and their applications. Nanoscale. 2010;2(12):2538–2549.

    Article  CAS  PubMed  Google Scholar 

  39. Lan L, Yao Y, Ping J, Ying Y. Recent advances in nanomaterial-based biosensors for antibiotics detection. Biosens Bioelectron. 2017;91:504–514.

    Article  CAS  PubMed  Google Scholar 

  40. Malhotra BD, Srivastava S, Ali MA, Singh C. Nanomaterial-based biosensors for food toxin detection. Appl Biochem Biotechnol. 2014;174(3):880–896.

    Article  CAS  PubMed  Google Scholar 

  41. Wei M, Yue S, Zhang W, Li X. Development of an electrochemical aptasensor using au octahedra and graphene for signal amplification. Anal Methods. 2020;12(3):317–323.

    Article  CAS  Google Scholar 

  42. He P, Wang C, Yang J, Yang Y. Advance of Ge/Si quantum dot infrared photodetector. Adv Mater Res. 2013;873:799–808.

    Article  Google Scholar 

  43. Dai S, Wu S, Duan N, Chen J, Zheng Z, Wang Z. An ultrasensitive aptasensor for Ochratoxin A using hexagonal core/shell upconversion nanoparticles as luminophores. Biosens Bioelectron. 2017;91:538–544.

    Article  CAS  PubMed  Google Scholar 

  44. Sharma A, Hayat A, Mishra RK, Catanante G, Bhand S, Marty JL. Titanium dioxide nanoparticles (TiO(2)) quenching based Aptasensing platform: application to Ochratoxin A detection. Toxins (Basel). 2015;7(9):3771–3784.

    Article  CAS  Google Scholar 

  45. Song D, Yang R, Fang S, Liu Y, Long F, Zhu A. SERS based aptasensor for ochratoxin A by combining Fe3O4@au magnetic nanoparticles and au-DTNB@ag nanoprobes with multiple signal enhancement. Mikrochim Acta. 2018;185(10):491.

    Article  PubMed  Google Scholar 

  46. Huang R, Xiong LL, Chai HH, Fu JJ, Lu Z, Yu L. Sensitive colorimetric detection of ochratoxin A by a dual-functional au/Fe3O4 nanohybrid-based aptasensor. RSC Adv. 2019;9(66):38590–38596.

    Article  CAS  Google Scholar 

  47. Liu Y, Yan H, Shangguan J, Yang X, Wang M, Liu W. A fluorometric aptamer-based assay for ochratoxin A using magnetic separation and a cationic conjugated fluorescent polymer. Mikrochim Acta. 2018;185(9):427.

    Article  PubMed  Google Scholar 

  48. Gaiani G, O’Sullivan CK, Campàs M. Magnetic beads in marine toxin detection. A Review Magnetochemistry. 2019;5(4):62.

  49. Wang B, Wu Y, Chen Y, Weng B, Xu L, Li C. A highly sensitive aptasensor for OTA detection based on hybridization chain reaction and fluorescent perylene probe. Biosens Bioelectron. 2016;81:125–130.

    Article  CAS  PubMed  Google Scholar 

  50. Luan Y, Chen J, Li C, Xie G, Fu H, Ma Z, et al. Highly sensitive colorimetric detection of Ochratoxin A by a label-free aptamer and gold nanoparticles. Toxins (Basel). 2015;7(12):5377–5385.

    Article  CAS  Google Scholar 

  51. Taghdisi SM, Danesh NM, Beheshti HR, Ramezani M, Abnous K. A novel fluorescent aptasensor based on gold and silica nanoparticles for the ultrasensitive detection of ochratoxin A. Nanoscale. 2016;8(6):3439–3446.

    Article  CAS  PubMed  Google Scholar 

  52. Liu Y, Yu J, Wang Y, Liu Z, Lu Z. An ultrasensitive aptasensor for detection of Ochratoxin A based on shielding effect-induced inhibition of fluorescence resonance energy transfer. Sensors Actuators B Chem. 2016;222:797–803.

    Article  CAS  Google Scholar 

  53. Huang K-J, Shuai H-L, Chen Y-X. Layered molybdenum selenide stacking flower-like nanostructure coupled with guanine-rich DNA sequence for ultrasensitive ochratoxin A aptasensor application. Sensors Actuators B Chem. 2016;225:391–397.

    Article  CAS  Google Scholar 

  54. Zhou W, Kong W, Dou X, Zhao M, Ouyang Z, Yang M. An aptamer based lateral flow strip for on-site rapid detection of ochratoxin A in Astragalus membranaceus. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1022:102–108.

    Article  CAS  PubMed  Google Scholar 

  55. Wei M, Zhang W. A novel impedimetric aptasensor based on AuNPs–carboxylic porous carbon for the ultrasensitive detection of ochratoxin A. RSC Adv. 2017;7(46):28655–28660.

    Article  CAS  Google Scholar 

  56. Wei M, Feng S. A signal-off aptasensor for the determination of Ochratoxin A by differential pulse voltammetry at a modified au electrode using methylene blue as an electrochemical probe. Anal Methods. 2017;9(37):5449–5454.

    Article  CAS  Google Scholar 

  57. Lv X, Zhang Y, Liu G, Du L, Wang S. Aptamer-based fluorescent detection of ochratoxin A by quenching of gold nanoparticles. RSC Adv. 2017;7(27):16290–16294.

    Article  CAS  Google Scholar 

  58. Zhao Y, Liu R, Sun W, Lv L, Guo Z. Ochratoxin A detection platform based on signal amplification by exonuclease III and fluorescence quenching by gold nanoparticles. Sensors Actuators B Chem. 2018;255:1640–1645.

    Article  CAS  Google Scholar 

  59. Chen W, Yan C, Cheng L, Yao L, Xue F, Xu J. An ultrasensitive signal-on electrochemical aptasensor for ochratoxin A determination based on DNA controlled layer-by-layer assembly of dual gold nanoparticle conjugates. Biosens Bioelectron. 2018;117:845–851.

    Article  CAS  PubMed  Google Scholar 

  60. Wang X, Shan Y, Gong M, Jin X, Lv L, Jiang M, et al. A novel electrochemical sensor for ochratoxin A based on the hairpin aptamer and double report DNA via multiple signal amplification strategy. Sensors Actuators B Chem. 2019;281:595–601.

    Article  CAS  Google Scholar 

  61. Liu B, Huang R, Yu Y, Su R, Qi W, He Z. Gold nanoparticle-aptamer-based LSPR sensing of Ochratoxin A at a widened detection range by double calibration curve method. Front Chem. 2018;6:94.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lv L, Jin Y, Kang X, Zhao Y, Cui C, Guo Z. PVP-coated gold nanoparticles for the selective determination of ochratoxin A via quenching fluorescence of the free aptamer. Food Chem. 2018;249:45–50.

    Article  CAS  PubMed  Google Scholar 

  63. He Y, Tian F, Zhou J, Zhao Q, Fu R, Jiao B. Colorimetric aptasensor for ochratoxin A detection based on enzyme-induced gold nanoparticle aggregation. J Hazard Mater. 2020;388:121758.

    Article  CAS  PubMed  Google Scholar 

  64. Yan X-L, Xue X-X, Luo J, Jian Y-T, Tong L, Zheng X-J. Construction of chemiluminescence aptasensor platform using magnetic microsphere for ochratoxin A detection based on G bases derivative reaction and au NPs catalyzing luminol system. Sensors and Actuators B: Chemical. 2020;320:128375.

  65. Jiang YY, Zhao X, Chen LJ, Yang C, Yin XB, Yan XP. Persistent luminescence nanorod based luminescence resonance energy transfer aptasensor for autofluorescence-free detection of mycotoxin. Talanta. 2020;218:121101.

    Article  CAS  PubMed  Google Scholar 

  66. Park JH, Byun JY, Mun H, Shim WB, Shin YB, Li T, et al. A regeneratable, label-free, localized surface plasmon resonance (LSPR) aptasensor for the detection of ochratoxin A. Biosens Bioelectron. 2014;59:321–327.

    Article  CAS  PubMed  Google Scholar 

  67. Yu X, Lin Y, Wang X, Xu L, Wang Z, Fu F. Exonuclease-assisted multicolor aptasensor for visual detection of ochratoxin A based on G-quadruplex-hemin DNAzyme-mediated etching of gold nanorod. Mikrochim Acta. 2018;185(5):259.

    Article  PubMed  Google Scholar 

  68. Wei M, Xin L, Feng S, Liu Y. Simultaneous electrochemical determination of ochratoxin A and fumonisin B1 with an aptasensor based on the use of a Y-shaped DNA structure on gold nanorods. Mikrochim Acta. 2020;187(2):102.

    Article  CAS  PubMed  Google Scholar 

  69. Wei M, Zhang W. Ultrasensitive aptasensor with DNA tetrahedral nanostructure for Ochratoxin A detection based on hemin/G-quadruplex catalyzed polyaniline deposition. Sensors Actuators B Chem. 2018;276:1–7.

    Article  CAS  Google Scholar 

  70. Lv L, Li D, Liu R, Cui C, Guo Z. Label-free aptasensor for ochratoxin A detection using SYBR gold as a probe. Sensors Actuators B Chem. 2017;246:647–652.

    Article  CAS  Google Scholar 

  71. Liu R, Wu H, Lv L, Kang X, Cui C, Feng J, et al. Fluorometric aptamer based assay for ochratoxin A based on the use of exonuclease III. Mikrochim Acta. 2018;185(5):254.

    Article  PubMed  Google Scholar 

  72. Xiao MW, Bai XL, Liu YM, Yang L, Liao X. Simultaneous determination of trace aflatoxin B1 and Ochratoxin A by aptamer-based microchip capillary electrophoresis in food samples. J Chromatogr A. 2018;1569:222–228.

    Article  CAS  PubMed  Google Scholar 

  73. Song C, Hong W, Zhang X, Lu Y. Label-free and sensitive detection of Ochratoxin A based on dsDNA-templated copper nanoparticles and exonuclease-catalyzed target recycling amplification. Analyst. 2018;143(8):1829–1834.

    Article  CAS  PubMed  Google Scholar 

  74. Qian J, Wang K, Wang C, Hua M, Yang Z, Liu Q, et al. A FRET-based ratiometric fluorescent aptasensor for rapid and onsite visual detection of ochratoxin A. Analyst. 2015;140(21):7434–7342.

    Article  CAS  PubMed  Google Scholar 

  75. Chu X, Dou X, Liang R, Li M, Kong W, Yang X, et al. A self-assembly aptasensor based on thick-shell quantum dots for sensing of ochratoxin A. Nanoscale. 2016;8(7):4127–4133.

    Article  CAS  PubMed  Google Scholar 

  76. Wei M, Wang C, Xu E, Chen J, Xu X, Wei W, et al. A simple and sensitive electrochemiluminescence aptasensor for determination of ochratoxin A based on a nicking endonuclease-powered DNA walking machine. Food Chem. 2019;282:141–146.

    Article  CAS  PubMed  Google Scholar 

  77. Liu L, Tanveer ZI, Jiang K, Huang Q, Zhang J, Wu Y, et al. Label-free fluorescent Aptasensor for Ochratoxin-a detection based on CdTe quantum dots and (N-Methyl-4-pyridyl) porphyrin. Toxins (Basel). 2019;11(8):447.

  78. Liu L, Huang Q, Tanveer ZI, Jiang K, Zhang J, Pan H, et al. “Turn off-on” fluorescent sensor based on quantum dots and self-assembled porphyrin for rapid detection of ochratoxin A. Sensors and Actuators B: Chemical. 2020;302:127212.

  79. Wang S, Zhang Y, Pang G, Zhang Y, Guo S. Tuning the aggregation/disaggregation behavior of graphene quantum dots by structure-switching aptamer for high-sensitivity fluorescent ochratoxin A sensor. Anal Chem. 2017;89(3):1704–1709.

    Article  CAS  PubMed  Google Scholar 

  80. Tian J, Wei W, Wang J, Ji S, Chen G, Lu J. Fluorescence resonance energy transfer aptasensor between nanoceria and graphene quantum dots for the determination of ochratoxin A. Anal Chim Acta. 2018;1000:265–272.

    Article  CAS  PubMed  Google Scholar 

  81. Bi X, Luo L, Li L, Liu X, Chen B, You T. A FRET-based aptasensor for ochratoxin A detection using graphitic carbon nitride quantum dots and CoOOH nanosheets as donor-acceptor pair. Talanta. 2020;218:121159.

    Article  CAS  PubMed  Google Scholar 

  82. Zhu X, Li W, Lin L, Huang X, Xu H, Yang G, et al. Target-responsive ratiometric fluorescent aptasensor for OTA based on energy transfer between [Ru(bpy)3](2+) and silica quantum dots. Mikrochim Acta. 2020;187(5):270.

    Article  CAS  PubMed  Google Scholar 

  83. Dai S, Wu S, Duan N, Wang Z. A luminescence resonance energy transfer based aptasensor for the mycotoxin Ochratoxin A using upconversion nanoparticles and gold nanorods. Microchim Acta. 2016;183(6):1909–1916.

    Article  CAS  Google Scholar 

  84. Dai S, Wu S, Duan N, Wang Z. A near-infrared magnetic aptasensor for Ochratoxin A based on near-infrared upconversion nanoparticles and magnetic nanoparticles. Talanta. 2016;158:246–253.

    Article  CAS  PubMed  Google Scholar 

  85. Wu S, Liu L, Duan N, Wang W, Yu Q, Wang Z. A test strip for ochratoxin A based on the use of aptamer-modified fluorescence upconversion nanoparticles. Mikrochim Acta. 2018;185(11):497.

    Article  PubMed  Google Scholar 

  86. Scida K, Stege PW, Haby G, Messina GA, Garcia CD. Recent applications of carbon-based nanomaterials in analytical chemistry: critical review. Anal Chim Acta. 2011;691(1–2):6–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wei Y, Zhang J, Wang X, Duan Y. Amplified fluorescent aptasensor through catalytic recycling for highly sensitive detection of ochratoxin A. Biosens Bioelectron. 2015;65:16–22.

    Article  CAS  PubMed  Google Scholar 

  88. Kaur N, Bharti A, Batra S, Rana S, Rana S, Bhalla A, et al. An electrochemical aptasensor based on graphene doped chitosan nanocomposites for determination of Ochratoxin A. Microchem J. 2019;144:102–109.

    Article  CAS  Google Scholar 

  89. Ma C, Wu K, Zhao H, Liu H, Wang K, Xia K. Fluorometric aptamer-based determination of ochratoxin A based on the use of graphene oxide and RNase H-aided amplification. Mikrochim Acta. 2018;185(7):347.

    Article  PubMed  Google Scholar 

  90. Sun AL, Zhang YF, Sun GP, Wang XN, Tang D. Homogeneous electrochemical detection of ochratoxin A in foodstuff using aptamer-graphene oxide nanosheets and DNase I-based target recycling reaction. Biosens Bioelectron. 2017;89(Pt 1):659–665.

    Article  CAS  PubMed  Google Scholar 

  91. Liu M, Li X, Li B, Du J, Yang Z. A fluorometric aptamer-based assay for ochratoxin A by using exonuclease III-assisted recycling amplification. Mikrochim Acta. 2019;187(1):46.

    Article  PubMed  Google Scholar 

  92. Wang Q, Yang Q, Wu W. Graphene-based Steganographic Aptasensor for information computing and monitoring toxins of biofilm in food. Front Microbiol. 2019;10:3139.

    Article  PubMed  Google Scholar 

  93. Zhang S, Li KB, Pan Y, Han DM. Ultrasensitive detection of ochratoxin A based on biomimetic nanochannel and catalytic hairpin assembly signal amplification. Talanta. 2020;220:121420.

    Article  CAS  PubMed  Google Scholar 

  94. Zhao H, Xiong D, Yan Y, Ma C. Amplified fluorescent Aptasensor for Ochratoxin A assay based on graphene oxide and RecJf exonuclease. Toxins (Basel). 2020;12(11):670.

  95. Alhamoud Y, Li Y, Zhou H, Al-Wazer R, Gong Y, Zhi S, et al. Label-free and highly-sensitive detection of Ochratoxin A using one-pot synthesized reduced graphene oxide/gold nanoparticles-based Impedimetric Aptasensor. Biosensors-Basel. 2021;11(3):87.

  96. Yuan C, Zhang K, Zhang Z, Wang S. Highly selective and sensitive detection of mercuric ion based on a visual fluorescence method. Anal Chem. 2012;84(22):9792–9801.

    Article  CAS  PubMed  Google Scholar 

  97. Shi J, Chan C, Pang Y, Ye W, Tian F, Lyu J, et al. A fluorescence resonance energy transfer (FRET) biosensor based on graphene quantum dots (GQDs) and gold nanoparticles (AuNPs) for the detection of mecA gene sequence of Staphylococcus aureus. Biosens Bioelectron. 2015;67:595–600.

    Article  CAS  PubMed  Google Scholar 

  98. Zhou B, Shi B, Jin D, Liu X. Controlling upconversion nanocrystals for emerging applications. Nat Nanotechnol. 2015;10(11):924–936.

    Article  CAS  PubMed  Google Scholar 

  99. Yang D, Dai Y, Ma Pa, Kang X, Shang M, Cheng Z, et al. Synthesis of Li1−xNaxYF4:Yb3+/ln3+ (0 ≤ x ≤ 0.3, Ln = Er, tm, ho) nanocrystals with multicolor upconversion luminescence properties for in vitro cell imaging. J Mater Chem. 2012;22(38):20618–20625.

  100. Zhang J, Shen HO, Wang SH, Li YL, Xin H, Zhu CT, et al. Preparation and characterization of rare earth ions doped fluoride Core-Shell up-conversion luminescence nanomaterials. Adv Mater Res. 2012;512-515:1972–1975.

    Article  CAS  Google Scholar 

  101. Hao N, Jiang L, Qian J, Wang K. Ultrasensitive electrochemical Ochratoxin A aptasensor based on CdTe quantum dots functionalized graphene/au nanocomposites and magnetic separation. J Electroanal Chem. 2016;781:332–338.

    Article  CAS  Google Scholar 

  102. Wang C, Tan R, Li J, Zhang Z. Double magnetic separation-assisted fluorescence method for sensitive detection of Ochratoxin A. Chem Res Chin Univ. 2019;35(3):382–389.

    Article  CAS  Google Scholar 

  103. Wang C, Qian J, Wang K, Wang K, Liu Q, Dong X, et al. Magnetic-fluorescent-targeting multifunctional aptasensorfor highly sensitive and one-step rapid detection of ochratoxin A. Biosens Bioelectron. 2015;68:783–790.

    Article  CAS  PubMed  Google Scholar 

  104. Wang C, Qian J, Wang K, Yang X, Liu Q, Hao N, et al. Colorimetric aptasensing of ochratoxin A using au@Fe3O4 nanoparticles as signal indicator and magnetic separator. Biosens Bioelectron. 2016;77:1183–1191.

    Article  CAS  PubMed  Google Scholar 

  105. Qian J, Ren C, Wang C, Chen W, Lu X, Li H, et al. Magnetically controlled fluorescence aptasensor for simultaneous determination of ochratoxin A and aflatoxin B1. Anal Chim Acta. 2018;1019:119–127.

    Article  CAS  PubMed  Google Scholar 

  106. Hayat A, Mishra RK, Catanante G, Marty JL. Development of an aptasensor based on a fluorescent particles-modified aptamer for ochratoxin A detection. Anal Bioanal Chem. 2015;407(25):7815–7822.

    Article  CAS  PubMed  Google Scholar 

  107. Modh H, Scheper T, Walter JG. Detection of ochratoxin A by aptamer-assisted real-time PCR-based assay (Apta-qPCR). Eng Life Sci. 2017;17(8):923–930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lin C, Zheng H, Sun M, Guo Y, Luo F, Guo L, et al. Highly sensitive colorimetric aptasensor for ochratoxin A detection based on enzyme-encapsulated liposome. Anal Chim Acta. 2018;1002:90–96.

    Article  CAS  PubMed  Google Scholar 

  109. Qin P, Huang D, Xu Z, Guan Y, Bing Y, Yu A. A potential reusable fluorescent aptasensor based on magnetic nanoparticles for ochratoxin A analysis. Open Chemistry. 2019;17(1):1301–1308.

    Article  CAS  Google Scholar 

  110. Tian F, Zhou J, Jiao B, He Y. A nanozyme-based cascade colorimetric aptasensor for amplified detection of ochratoxin A. Nanoscale. 2019;11(19):9547–9555.

    Article  CAS  PubMed  Google Scholar 

  111. Rivas L, Mayorga-Martinez CC, Quesada-Gonzalez D, Zamora-Galvez A, de la Escosura-Muniz A, Merkoci A. Label-free impedimetric aptasensor for ochratoxin-a detection using iridium oxide nanoparticles. Anal Chem. 2015;87(10):5167–5172.

    Article  CAS  PubMed  Google Scholar 

  112. Ribes A, Santiago-Felipe S, Bernardos A, Marcos MD, Pardo T, Sancenon F, et al. Two new Fluorogenic Aptasensors based on capped mesoporous silica nanoparticles to detect Ochratoxin A. ChemistryOpen. 2017;6(5):653–659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lu Z, Chen X, Hu W. A fluorescence aptasensor based on semiconductor quantum dots and MoS2 nanosheets for ochratoxin A detection. Sensors Actuators B Chem. 2017;246:61–67.

    Article  CAS  Google Scholar 

  114. Tang J, Huang Y, Cheng Y, Huang L, Zhuang J, Tang D. Two-dimensional MoS2 as a nano-binder for ssDNA: ultrasensitive aptamer based amperometric detection of Ochratoxin A. Mikrochim Acta. 2018;185(3):162.

    Article  PubMed  Google Scholar 

  115. Hu S, Ouyang W, Guo L, Lin Z, Jiang X, Qiu B, et al. Facile synthesis of Fe3O4/g-C3N4/HKUST-1 composites as a novel biosensor platform for ochratoxin A. Biosens Bioelectron. 2017;92:718–723.

    Article  CAS  PubMed  Google Scholar 

  116. Wang P, Wang L, Ding M, Pei M, Guo W. Ultrasensitive electrochemical detection of ochratoxin A based on signal amplification by one-pot synthesized flower-like PEDOT-AuNFs supported on a graphene oxide sponge. Analyst. 2019;144(19):5866–5874.

    Article  CAS  PubMed  Google Scholar 

  117. Li K, Qiao X, Zhao H, He Y, Sheng Q, Yue T. Ultrasensitive and label-free electrochemical aptasensor based on carbon dots-black phosphorus nanohybrid for the detection of Ochratoxins A. Microchem J. 2021;168:106378.

  118. Wang Y, Song W, Zhao H, Ma X, Yang S, Qiao X, et al. DNA walker-assisted aptasensor for highly sensitive determination of Ochratoxin A. Biosens Bioelectron. 2021;182:113171.

    Article  CAS  PubMed  Google Scholar 

  119. Sun F, Kang L, Xiang X, Li H, Luo X, Luo R, et al. Recent advances and progress in the detection of bisphenol a. Anal Bioanal Chem. 2016;408(25):6913–6927.

    Article  CAS  PubMed  Google Scholar 

  120. Huertas-Pérez JF, Arroyo-Manzanares N, García-Campaña AM, Gámiz-Gracia L. Solid phase extraction as sample treatment for the determination of Ochratoxin A in foods: a review. Crit Rev Food Sci Nutr. 2017;57(16):3405–3420.

    Article  PubMed  Google Scholar 

  121. Wang L, Ma W, Chen W, Liu L, Ma W, Zhu Y, et al. An aptamer-based chromatographic strip assay for sensitive toxin semi-quantitative detection. Biosens Bioelectron. 2011;26(6):3059–3062.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant No. 931702218, 31701694], The Young and Middle-aged Leading Scientists, Engineers and Innovators of the XPCC (Grant No. 2019CB017), Natural Science Foundation of Henan Province [Grant No. 202300410121, 182300410038], Foundation for University Young Key Teacher Program of Henan Province [Grant No. 2018GGJS048], and the Youth Talent Support Project of Henan Province [Grant No. 112020HYTP029].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaozhou Li or Yao Wang.

Ethics declarations

Conflict of interest

All the authors have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Gao, D., Sun, F. et al. Nanomaterial-based aptamer biosensors for ochratoxin A detection: a review. Anal Bioanal Chem 414, 2953–2969 (2022). https://doi.org/10.1007/s00216-022-03960-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-03960-5

Keywords

Navigation