Skip to main content
Log in

Sparse autoencoder–based feature extraction from TOF–SIMS image data of human skin structures

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Time-of-flight secondary ion mass spectrometry (TOF–SIMS) is a useful and versatile tool for surface analysis, enabling detailed compositional information to be obtained for the surfaces of diverse samples. Furthermore, in the case of two- or three-dimensional imaging, the measurement sensitivity in the higher molecular weight range can be improved by using a cluster ion source, thus further enriching the TOF–SIMS information. Therefore, appropriate analytical methods are required to interpret this TOF–SIMS data. This study explored the capabilities of a sparse autoencoder, a feature extraction method based on artificial neural networks, to process TOF–SIMS image data. The sparse autoencoder was applied to TOF–SIMS images of human skin keratinocytes to extract the distribution of endogenous intercellular lipids and externally penetrated drugs. The results were compared with those obtained using principal component analysis (PCA) and multivariate curve resolution (MCR), which are conventionally used for extracting features from TOF–SIMS data. This confirmed that the sparse autoencoder matches, and often betters, the feature extraction performance of conventional methods, while also offering greater flexibility.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The raw data of this study are available on request with proper reason from the corresponding author, Kazuhiro Matsuda.

Code availability

Not applicable.

References

  1. Douglas MA, Chen PJ. Quantitative trace metal analysis of silicon surface by ToF-SIMS. Surf Interface Anal. 1998;26(13):984–94.

    Article  CAS  Google Scholar 

  2. Zanderigo F, Ferrari S, Queirolo G, Pello C, Borgini M. Quantitative TOF-SIMS analysis of metal contamination on silicon wafers. Mat Sci Eng B-Solid. 2000;73(1):173–7.

    Article  Google Scholar 

  3. Auditore A, Samperi F, Puglisi C, Licciardello A. ToF-SIMS investigation of the thermally induced processes at the surface of polyester based polymer blends. Compos Sci Technol. 2003;63(8):1213–9.

    Article  CAS  Google Scholar 

  4. Oran U, Ünveren E, Wirth T, Unger WES. Poly-dimethyl-siloxane (PDMS) contamination of polystyrene (PS) oligomers samples: a comparison of time-of-flight static secondary ion mass spectrometry (TOF-SSIMS) and X-ray photoelectron spectroscopy (XPS) results. Appl Surf Sci. 2004;227(1–4):318–24.

    Article  CAS  Google Scholar 

  5. Belu AM, Graham DJ, Castner DG. Time-of-flight secondary ion mass spectrometry: techniques and applications for the characterization of biomaterial surfaces. Biomaterials. 2003;24(21):3635–53.

    Article  CAS  Google Scholar 

  6. Kessler L, Legeay G, Coudreuse A, Bertrand P, Poleunus C, Vanden Eynde X, Mandes K, Marchetti P, Pinget M, Belcourt A. Surface treatment of polycarbonate films aimed at biomedical application. J Biomater Sci, Polym Ed. 2003;14(10):1135–53.

    Article  CAS  Google Scholar 

  7. Kingshott P, Andersson G, McArthur SL, Griesser HJ. Surface modification and chemical surface analysis of biomaterials. Curr Opin Chem Biol. 2011;15(5):667–76.

    Article  CAS  Google Scholar 

  8. Benabdellah F, Seyer A, Quinton L, Touboul D, Brunelle A, Laprevote O. Mass spectrometry imaging of rat brain sections: nanomolar sensitivity with MALDI versus nanometer resolution by TOF-SIMS. Anal Bioanal Chem. 2010;396(1):151–62.

    Article  CAS  Google Scholar 

  9. Brunelle A, Touboul D, Laprevote O. Biological tissue imaging with time-of-flight secondary ion mass spectrometry and cluster ion sources. J Mass Spectrom. 2005;40(8):985–99.

    Article  CAS  Google Scholar 

  10. Kim JH, Kim JH, Ahn BJ, Park JH, Shon HK, Yu YS, Moon DW, Lee TG, Kim KW. Label-free calcium imaging in ischemic retinal tissue by TOF-SIMS. Biophys J. 2008;94(10):4095–102.

    Article  CAS  Google Scholar 

  11. Kojima T, Yamada H, Yamamoto T, Matsushita Y, Fukushima K. Dyeing regions of oxidative hair dyes in human hair investigated by nanoscale secondary ion mass spectrometry. Colloids Surf B Biointerfaces. 2013;106:140–4.

    Article  CAS  Google Scholar 

  12. Mains J, Wilson CG, Urquhart A. ToF-SIMS analysis of dexamethasone distribution in the isolated perfused eye. Invest Ophthalmol Vis Sci. 2011;52(11):8413–9.

    Article  CAS  Google Scholar 

  13. Sjövall P, Rossmeisl M, Hanrieder J, Kuda O, Kopecky J, Bryhn M. Dietary uptake of omega-3 fatty acids in mouse tissue studied by time-of-flight secondary ion mass spectrometry (TOF-SIMS). Anal Bioanal Chem. 2015;407(17):5101–11.

    Article  Google Scholar 

  14. Fletcher JS. Latest applications of 3D ToF-SIMS bio-imaging. Biointerphases. 2015;10(1):018902.

    Article  Google Scholar 

  15. Passarelli MK, Winograd N. Characterizing in situ glycerophospholipids with SIMS and MALDI methodologies. Surf Interface Anal. 2011;43(1–2):269–71.

    Article  CAS  Google Scholar 

  16. Weibel DE, Lockyer N, Vickerman JC. C60 cluster ion bombardment of organic surfaces. Appl Surf Sci. 2004;231–232:146–52.

    Article  Google Scholar 

  17. Angerer TB, Velickovic D, Nicora CD, Kyle JE, Graham DJ, Anderton C, Gamble LJ. Exploiting the semidestructive nature of gas cluster ion beam time-of-flight secondary ion mass spectrometry imaging for simultaneous localization and confident LIPID ANNOTATIONS. Anal Chem. 2019;91(23):15073–80.

    Article  CAS  Google Scholar 

  18. Fujii M, Nakagawa S, Matsuda K, Man N, Seki T, Aoki T, Matsuo J. Study on the detection limits of a new argon gas cluster ion beam secondary ion mass spectrometry apparatus using lipid compound samples. Rapid Commun Mass Spectrom. 2014;28(8):917–20.

    Article  CAS  Google Scholar 

  19. Mohammadi AS, Phan NT, Fletcher JS, Ewing AG. Intact lipid imaging of mouse brain samples: MALDI, nanoparticle-laser desorption ionization, and 40 keV argon cluster secondary ion mass spectrometry. Anal Bioanal Chem. 2016;408(24):6857–68.

    Article  CAS  Google Scholar 

  20. Dimovska Nilsson K, Karagianni A, Kaya I, Henricsson M, Fletcher JS. (CO2)n+, (H2O)n+, and (H2O)n+ (CO2) gas cluster ion beam secondary ion mass spectrometry: analysis of lipid extracts, cells, and Alzheimer’s model mouse brain tissue. Anal Bioanal Chem. 2021;413(16):4181–94.

    Article  CAS  Google Scholar 

  21. Razo IB, Sheraz S, Henderson A, Lockyer NP, Vickerman JC. Mass spectrometric imaging of brain tissue by time-of-flight secondary ion mass spectrometry - how do polyatomic primary beams C60+, Ar2000+, water-doped Ar2000+ and (H2O)6000+ compare? Rapid Commun Mass Spectrom. 2015;29(20):1851–62.

    Article  Google Scholar 

  22. Lee JLS, Gilmore IS, Fletcher IW, Seah MP. Multivariate image analysis strategies for ToF-SIMS images with topography. Surf Interface Anal. 2009;41(8):653–65.

    Article  CAS  Google Scholar 

  23. Wagner MS, Castner DG. Characterization of adsorbed protein films by time-of-flight secondary ion mass spectrometry with principal component analysis. Langmuir. 2001;17(15):4649–60.

    Article  CAS  Google Scholar 

  24. Wagner MS, Graham DJ, Castner DG. Simplifying the interpretation of ToF-SIMS spectra and images using careful application of multivariate analysis. Appl Surf Sci. 2006;252(19):6575–81.

    Article  CAS  Google Scholar 

  25. Aoyagi S, Matsuzaki T, Takahashi M, Sakurai Y, Kudo M. Evaluation of reagent effect on skin using time-of-flight secondary ion mass spectrometry and multivariate curve resolution. Surf Interface Anal. 2012;44(6):772–5.

    Article  CAS  Google Scholar 

  26. Lai H, Liu Q, Deng J, Wen S, Liu Z. Surface chemistry study of Cu-Pb sulfide ore using ToF-SIMS and multivariate analysis. Appl Surf Sci. 2020;518.

  27. Almuqhim F, Saeed F. ASD-SAENet: a sparse autoencoder, and deep-neural network model for detecting autism spectrum disorder (ASD) using fMRI data. Front Comput Neurosci. 2021;15:654315.

    Article  Google Scholar 

  28. Aslam MA, Xue C, Chen Y, Zhang A, Liu M, Wang K, Cui D. Breath analysis based early gastric cancer classification from deep stacked sparse autoencoder neural network. Sci Rep. 2021;11(1):4014.

    Article  CAS  Google Scholar 

  29. Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science. 2006;313(5786):504–7.

    Article  CAS  Google Scholar 

  30. Kawashima T, Aoki T, Taniike Y, Aoyagi S. Examination of beauty ingredient distribution in the human skin by time-of-flight secondary ion mass spectrometry. Biointerphases. 2020;15(3):031013.

    Article  CAS  Google Scholar 

  31. Thomas SA, Race AM, Steven RT, Gilmore IS, Bunch J. Dimensionality reduction of mass spectrometry imaging data using autoencoders. Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI). 2016.

  32. Matsuda K, Aoyagi S. Time-of-flight secondary ion mass spectrometry analysis of hair samples using unsupervised artificial neural network. Biointerphases. 2020;15(2):021013.

    Article  Google Scholar 

  33. Starr NJ, Abdul Hamid K, Wibawa J, Marlow I, Bell M, Perez-Garcia L, Barrett DA, Scurr DJ. Enhanced vitamin C skin permeation from supramolecular hydrogels, illustrated using in situ ToF-SIMS 3D chemical profiling. Int J Pharm. 2019;563:21–9.

    Article  CAS  Google Scholar 

  34. Cizinauskas V, Elie N, Brunelle A, Briedis V. Fatty acids penetration into human skin ex vivo: a TOF-SIMS analysis approach. Biointerphases. 2017;12(1):011003.

    Article  Google Scholar 

  35. Holmes AM, Scurr DJ, Heylings JR, Wan KW, Moss GP. Dendrimer pre-treatment enhances the skin permeation of chlorhexidine digluconate: characterisation by in vitro percutaneous absorption studies and time-of-flight secondary ion mass spectrometry. Eur J Pharm Sci. 2017;104:90–101.

    Article  CAS  Google Scholar 

  36. Sjövall P, Skedung L, Gregoire S, Biganska O, Clément F, Luengo GS. Imaging the distribution of skin lipids and topically applied compounds in human skin using mass spectrometry. Sci Rep. 2018;8(1):16683.

    Article  Google Scholar 

  37. Starr NJ, Johnson DJ, Wibawa J, Marlow I, Bell M, Barrett DA, Scurr DJ. Age-related changes to human stratum corneum lipids detected using time-of-flight secondary ion mass spectrometry following in vivo sampling. Anal Chem. 2016;88(8):4400–8.

    Article  CAS  Google Scholar 

  38. Chollet F, et al. Keras 2015 [Available from: https://keras.io. Accessed 15 Sep 2021.

  39. Géron A. Hand’s-on machine learning with Scikit-Learn, Keras, & Tensorflow. 2nd ed. Sebastpol CA: O’ Reilly Media, Inc.; 2019.

    Google Scholar 

  40. Kingma DP, Ba JL. Adam: A method for stochastic optimization. 3rd International Conference for Learning Representations (ICLR) 2015; San Diego: arXiv preprint; 2014.

Download references

Author information

Authors and Affiliations

Authors

Contributions

Kazuhiro Matsuda was responsible for writing (original draft), investigation, data acquisition (sample preparation and TOF–SIMS measurements), data processing, and data visualization.

Satoka Aoyagi was responsible for supervision, methodology, and writing (review and editing).

Corresponding author

Correspondence to Kazuhiro Matsuda.

Ethics declarations

Ethics approval

The evaluation of this study was based on the Declaration of Helsinki and conducted under approval of the ethics committee of Toray research center Inc.

Consent to participate

Written informed consent was obtained from the provider of skin corneocytes for publication of this study.

Consent for publication

Consent for publication was obtained from the provider of skin corneocytes by written form.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17194 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuda, K., Aoyagi, S. Sparse autoencoder–based feature extraction from TOF–SIMS image data of human skin structures. Anal Bioanal Chem 414, 1177–1186 (2022). https://doi.org/10.1007/s00216-021-03744-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03744-3

Keywords

Navigation