Skip to main content
Log in

Molecular imprinting technology for sensing foodborne pathogenic bacteria

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Foodborne diseases caused by bacterial pathogens pose a widespread and growing threat to public health in the world. Rapid detection of pathogenic bacteria is of great importance to prevent foodborne diseases and ensure food safety. However, traditional detection methods are time-consuming, labour intensive and expensive. In recent years, many attempts have been made to develop alternative methods for bacterial detection. Biosensors integrated with molecular imprinted polymers (MIPs) and various transducer platforms are among the most promising candidates for the detection of pathogenic bacteria in a highly sensitive, selective and ultra-rapid manner. In this review, we summarize the most recent advances in molecular imprinting for bacterial detection, introduce the underlying recognition mechanisms and highlight the applications of MIP-based biosensors. In addition, the challenges and future perspectives are discussed with the aim of accelerating the development of MIP-based biosensors and extending their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. World Health Organization. WHO estimates of the global burden of foodborne diseases: foodborne disease burden epidemiolgy reference group 2007–2015. Geneva: World Health Organization; 2015.

  2. Scharff RL. Economic burden from health losses due to foodborne illness in the United States. J Food Prot. 2012;75:123–31. https://doi.org/10.4315/0362-028X.JFP-11-058.

    Article  PubMed  Google Scholar 

  3. Law JWF, Mutalib NSA, Chan KG, Lee LH. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol. 2014;5:770. https://doi.org/10.3389/fmicb.2014.00770.

    Article  PubMed  Google Scholar 

  4. Yang L, Bashir R. Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria. Biotechnol Adv. 2008;26:135–50. https://doi.org/10.1016/j.biotechadv.2007.10.003.

    Article  CAS  PubMed  Google Scholar 

  5. Arthur TM, Bosilevac JM, Nou X, Koohmaraie M. Evaluation of culture- and PCR-based detection methods for Escherichia coli O157:H7 in inoculated ground beef. J Food Prot. 2005;68:1566–74. https://doi.org/10.4315/0362-028X-68.8.1566.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang Y, Zhu L, Zhang Y, He P, Wang Q. Simultaneous detection of three foodborne pathogenic bacteria in food samples by microchip capillary electrophoresis in combination with polymerase chain reaction. J Chromatogr A. 2018;1555:100–5. https://doi.org/10.1016/j.chroma.2018.04.058.

    Article  CAS  PubMed  Google Scholar 

  7. Pang B, Zhao C, Li L, Song X, Xu K, Wang J, et al. Development of a low-cost paper-based ELISA method for rapid Escherichia coli O157:H7 detection. Anal Biochem. 2018;542:58–62. https://doi.org/10.1016/j.ab.2017.11.010.

    Article  CAS  PubMed  Google Scholar 

  8. Eersels K, Lieberzeit P, Wagner P. A review on synthetic receptors for bioparticle detection created by surface-imprinting techniques - from principles to applications. ACS Sensors. 2016;1:1171–87. https://doi.org/10.1021/acssensors.6b00572.

    Article  CAS  Google Scholar 

  9. Ertürk G, Mattiasson B. Molecular imprinting techniques used for the preparation of biosensors. Sensors. 2017;17:288. https://doi.org/10.3390/s17020288.

    Article  CAS  PubMed Central  Google Scholar 

  10. Sergeyeva T, Yarynka D, Piletska E, Linnik R, Zaporozhets O, Brovko O, et al. Development of a smartphone-based biomimetic sensor for aflatoxin B1 detection using molecularly imprinted polymer membranes. Talanta. 2019;201:204–10. https://doi.org/10.1016/j.talanta.2019.04.016.

    Article  CAS  PubMed  Google Scholar 

  11. Guo W, Pi F, Zhang H, Sun J, Zhang Y, Sun X. A novel molecularly imprinted electrochemical sensor modified with carbon dots, chitosan, gold nanoparticles for the determination of patulin. Biosens Bioelectron. 2017;98:299–304. https://doi.org/10.1016/j.bios.2017.06.036.

    Article  CAS  PubMed  Google Scholar 

  12. Hu X, Cai Q, Fan Y, Ye T, Cao Y, Guo C. Molecularly imprinted polymer coated solid-phase microextraction fibers for determination of Sudan I-IV dyes in hot chili powder and poultry feed samples. J Chromatogr A. 2012;1219:39–46. https://doi.org/10.1016/j.chroma.2011.10.089.

    Article  CAS  PubMed  Google Scholar 

  13. Feng F, Zheng J, Qin P, Han T, Zhao D. A novel quartz crystal microbalance sensor array based on molecular imprinted polymers for simultaneous detection of clenbuterol and its metabolites. Talanta. 2017;167:94–102. https://doi.org/10.1016/j.talanta.2017.02.001.

    Article  CAS  PubMed  Google Scholar 

  14. Ashley J, Shukor Y, D’Aurelio R, Trinh L, Rodgers TL, Temblay J, et al. Synthesis of molecularly imprinted polymer nanoparticles for α-casein detection using surface plasmon resonance as a milk allergen sensor. ACS Sensors. 2018;3:418–24. https://doi.org/10.1021/acssensors.7b00850.

    Article  CAS  PubMed  Google Scholar 

  15. Ahari H, Hedayati M, Akbari-adergani B, Kakoolaki S, Hosseini H, Anvar A. Staphylococcus aureus exotoxin detection using potentiometric nanobiosensor for microbial electrode approach with the effects of pH and temperature. Int J Food Prop. 2017;20:S1578–87. https://doi.org/10.1080/10942912.2017.1347944.

    Article  CAS  Google Scholar 

  16. Fu K, Zhang H, Guo Y, Li J, Nie H, Song X, et al. Rapid and selective recognition of Vibrio parahaemolyticus assisted by perfluorinated alkoxysilane modified molecularly imprinted polymer film. RSC Adv. 2020;10:14305–12. https://doi.org/10.1039/d0ra00306a.

    Article  CAS  Google Scholar 

  17. Razavilar V, Ahari H, Akbari Adergani B, Anvar AA. A central composite face-centered design for optimizing the detection of Salmonella typhi with a fluorescence nanobiosensor using the microcontact method. Int J Environ Sci Technol. 2019;16:4637–46. https://doi.org/10.1007/s13762-018-1871-z.

    Article  CAS  Google Scholar 

  18. Sykora S, Cumbo A, Belliot G, Pothier P, Arnal C, Dudal Y, et al. Virus-like particles as virus substitutes to design artificial virus-recognition nanomaterials. Chem Commun. 2015;51:2256–8. https://doi.org/10.1039/c4cc08843c.

    Article  CAS  Google Scholar 

  19. Chen L, Wang X, Lu W, Wu X, Li J. Molecular imprinting: perspectives and applications. Chem Soc Rev. 2016;45:2137–211. https://doi.org/10.1039/c6cs00061d.

    Article  CAS  PubMed  Google Scholar 

  20. Chen L, Xu S, Li J. Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem Soc Rev. 2011;40:2922–42. https://doi.org/10.1039/c0cs00084a.

    Article  CAS  PubMed  Google Scholar 

  21. Vasapollo G, Del Sole R, Mergola L, Lazzoi MR, Scardino A, Scorrano S, et al. Molecularly imprinted polymers: present and future prospective. Int J Mol Sci. 2011;12:5908–45. https://doi.org/10.3390/ijms12095908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Piletsky S, Canfarotta F, Poma A, Bossi AM, Piletsky S. Molecularly imprinted polymers for cell recognition. Trends Biotechnol. 2020;38:368–87. https://doi.org/10.1016/j.tibtech.2019.10.002.

    Article  CAS  PubMed  Google Scholar 

  23. Pan J, Chen W, Ma Y, Pan G. Molecularly imprinted polymers as receptor mimics for selective cell recognition. Chem Soc Rev. 2018;47:5574–87. https://doi.org/10.1039/c7cs00854f.

    Article  CAS  PubMed  Google Scholar 

  24. Tokonami S, Nakadoi Y, Nakata H, Takami S, Kadoma T, Shiigi H, et al. Recognition of gram-negative and gram-positive bacteria with a functionalized conducting polymer film. Res Chem Intermed. 2014;40:2327–35. https://doi.org/10.1007/s11164-014-1609-6.

    Article  CAS  Google Scholar 

  25. Starosvetsky J, Cohen T, Cheruti U, Dragoljub D, Armon R. Effects of physical parameters on bacterial cell adsorption onto pre-imprinted sol-gel films. J Biomater Nanobiotechnol. 2012;3:499–507. https://doi.org/10.4236/jbnb.2012.324051.

    Article  Google Scholar 

  26. Namvar A, Warriner K. Microbial imprinted polypyrrole/poly(3-methylthiophene) composite films for the detection of Bacillus endospores. Biosens Bioelectron. 2007;22:2018–24. https://doi.org/10.1016/j.bios.2006.08.039.

    Article  CAS  PubMed  Google Scholar 

  27. Mankar JS, Sharma MD, Rayalu SS, Krupadam RJ. Molecularly imprinted microparticles (microMIPs) embedded with reduced graphene oxide for capture and destruction of E. coli in drinking water. Mater Sci Eng C. 2020;110:110672. https://doi.org/10.1016/j.msec.2020.110672.

    Article  CAS  Google Scholar 

  28. Bao H, Yang B, Zhang X, Lei L, Li Z. Bacteria-templated fabrication of a charge heterogeneous polymeric interface for highly specific bacterial recognition. Chem Commun. 2017;53:2319–22. https://doi.org/10.1039/c6cc09242j.

    Article  CAS  Google Scholar 

  29. Idil N, Mattiasson B. Imprinting of microorganisms for biosensor applications. Sensors. 2017;17:708. https://doi.org/10.3390/s17040708.

    Article  CAS  PubMed Central  Google Scholar 

  30. Kryscio DR, Peppas NA. Critical review and perspective of macromolecularly imprinted polymers. Acta Biomater. 2012;8:461–73. https://doi.org/10.1016/j.actbio.2011.11.005.

    Article  CAS  PubMed  Google Scholar 

  31. Jiang W, Saxena A, Song B, Ward BB, Beveridge TJ, Myneni SCB. Elucidation of functional groups on gram-positive and gram-negative bacterial surfaces using infrared spectroscopy. Langmuir. 2004;20:11433–42. https://doi.org/10.1021/la049043+.

    Article  CAS  PubMed  Google Scholar 

  32. Gür SD, Bakhshpour M, Denizli A. Selective detection of Escherichia coli caused UTIs with surface imprinted plasmonic nanoscale sensor. Mater Sci Eng C. 2019;104:109869. https://doi.org/10.1016/j.msec.2019.109869.

    Article  CAS  Google Scholar 

  33. Yilmaz E, Schmidt RH, Mosbach K. The noncovalent approach. In: Yan M, Ramström O, editors. Molecularly imprinted materials: science and technology. New York: Marcel Dekker; 2005. pp. 25–57.

  34. Chen S, Chen X, Zhang L, Gao J, Ma Q. Electrochemiluminescence detection of Escherichia coli O157:H7 based on a novel polydopamine surface imprinted polymer biosensor. ACS Appl Mater Interfaces. 2017;9:5430–6. https://doi.org/10.1021/acsami.6b12455.

    Article  CAS  PubMed  Google Scholar 

  35. Bezdekova J, Zemankova K, Hutarova J, Kociova S, Smerkova K, Adam V, et al. Magnetic molecularly imprinted polymers used for selective isolation and detection of Staphylococcus aureus. Food Chem. 2020;321:126673. https://doi.org/10.1016/j.foodchem.2020.126673.

    Article  CAS  PubMed  Google Scholar 

  36. Schirhagl R. Bioapplications for molecularly imprinted polymers. Anal Chem. 2014;86:250–61. https://doi.org/10.1021/ac401251j.

    Article  CAS  PubMed  Google Scholar 

  37. Jia M, Zhang Z, Li J, Ma X, Chen L, Yang X. Molecular imprinting technology for microorganism analysis. TrAC - Trends Anal Chem. 2018;106:190–201. https://doi.org/10.1016/j.trac.2018.07.011.

    Article  CAS  Google Scholar 

  38. Zhou T, Zhang K, Kamra T, Bülow L, Ye L. Preparation of protein imprinted polymer beads by Pickering emulsion polymerization. J Mater Chem B. 2015;3:1254–60. https://doi.org/10.1039/c4tb01605j.

    Article  CAS  PubMed  Google Scholar 

  39. Crapnell RD, Hudson A, Foster CW, Eersels K, van Grinsven B, Cleij TJ, et al. Recent advances in electrosynthesized molecularly imprinted polymer sensing platforms for bioanalyte detection. Sensors. 2019;19:1204. https://doi.org/10.3390/s19051204.

    Article  CAS  PubMed Central  Google Scholar 

  40. Poller AM, Spieker E, Lieberzeit PA, Preininger C. Surface imprints: advantageous application of ready2use materials for bacterial quartz-crystal microbalance sensors. ACS Appl Mater Interfaces. 2017;9:1129–35. https://doi.org/10.1021/acsami.6b13888.

    Article  CAS  PubMed  Google Scholar 

  41. Idil N, Hedström M, Denizli A, Mattiasson B. Whole cell based microcontact imprinted capacitive biosensor for the detection of Escherichia coli. Biosens Bioelectron. 2017;87:807–15. https://doi.org/10.1016/j.bios.2016.08.096.

    Article  CAS  PubMed  Google Scholar 

  42. Perçin I, Idil N, Bakhshpour M, Yılmaz E, Mattiasson B, Denizli A. Microcontact imprinted plasmonic nanosensors: powerful tools in the detection of Salmonella paratyphi. Sensors. 2017;17:1375. https://doi.org/10.3390/s17061375.

    Article  CAS  PubMed Central  Google Scholar 

  43. Shen X, Svensson Bonde J, Kamra T, Bülow L, Leo JC, Linke D, et al. Bacterial imprinting at Pickering emulsion interfaces. Angew Chem - Int Ed. 2014;53:10687–90. https://doi.org/10.1002/anie.201406049.

  44. Hayden O, Dickert FL. Selective microorganism detection with cell surface imprinted polymers. Adv Mater. 2001;13:1480–3. https://doi.org/10.1002/1521-4095(200110)13:19<1480::AID-ADMA1480>3.0.CO;2-V.

    Article  CAS  Google Scholar 

  45. Ren K, Zare RN. Chemical recognition in cell-imprinted polymers. ACS Nano. 2012;6:4314–8. https://doi.org/10.1021/nn300901z.

    Article  CAS  PubMed  Google Scholar 

  46. Latif U, Qian J, Can S, Dickert FL. Biomimetic receptors for bioanalyte detection by quartz crystal microbalances-from molecules to cells. Sensors. 2014;14:23419–38. https://doi.org/10.3390/s141223419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Seifner A, Lieberzeit P, Jungbauer C, Dickert FL. Synthetic receptors for selectively detecting erythrocyte ABO subgroups. Anal Chim Acta. 2009;651:215–9. https://doi.org/10.1016/j.aca.2009.08.021.

    Article  CAS  PubMed  Google Scholar 

  48. Samardzic R, Sussitz HF, Jongkon N, Lieberzeit PA. Quartz crystal microbalance in-line sensing of Escherichia coli in a bioreactor using molecularly imprinted polymers. Sens Lett. 2014;12:1152–5. https://doi.org/10.1166/sl.2014.3201.

  49. Spieker E, Lieberzeit PA. Molecular imprinting studies for developing QCM-sensors for Bacillus cereus. Proc Eng. 2016;168:561–4. https://doi.org/10.1016/j.proeng.2016.11.525.

    Article  CAS  Google Scholar 

  50. Zhao X, Cui Y, Wang J, Wang J. Preparation of fluorescent molecularly imprinted polymers via Pickering emulsion interfaces and the application for visual sensing analysis of Listeria monocytogenes. Polymers (Basel). 2019;11:984. https://doi.org/10.3390/polym11060984.

    Article  CAS  Google Scholar 

  51. Boysen RI, Schwarz LJ, Nicolau DV, Hearn MTW. Molecularly imprinted polymer membranes and thin films for the separation and sensing of biomacromolecules. J Sep Sci. 2017;40:314–35. https://doi.org/10.1002/jssc.201600849.

    Article  CAS  PubMed  Google Scholar 

  52. Frasco MF, Truta LAANA, Sales MGF, Moreira FTC. Imprinting technology in electrochemical biomimetic sensors. Sensors. 2017;17:523. https://doi.org/10.3390/s17030523.

    Article  CAS  PubMed Central  Google Scholar 

  53. Li R, Feng Y, Pan G, Liu L. Advances in molecularly imprinting technology for bioanalytical applications. Sensors. 2019;19:177. https://doi.org/10.3390/s19010177.

    Article  CAS  PubMed Central  Google Scholar 

  54. Tokonami S, Nakadoi Y, Takahashi M, Ikemizu M, Kadoma T, Saimatsu K, et al. Label-free and selective bacteria detection using a film with transferred bacterial configuration. Anal Chem. 2013;85:4925–9. https://doi.org/10.1021/ac3034618.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang N, Zhang N, Xu Y, Li Z, Yan C, Mei K, et al. Molecularly imprinted materials for selective biological recognition. Macromol Rapid Commun. 2019;40:1900096. https://doi.org/10.1002/marc.201900096.

    Article  CAS  Google Scholar 

  56. Borovička J, Stoyanov SD, Paunov VN. Shape recognition of microbial cells by colloidal cell imprints. Nanoscale. 2013;5:8560–8. https://doi.org/10.1039/c3nr01893h.

    Article  CAS  PubMed  Google Scholar 

  57. Borovička J, Metheringham WJ, Madden LA, Walton CD, Stoyanov SD, Paunov VN. Photothermal colloid antibodies for shape-selective recognition and killing of microorganisms. J Am Chem Soc. 2013;135:5282–5. https://doi.org/10.1021/ja400781f.

    Article  CAS  PubMed  Google Scholar 

  58. Zhang Z, Guan Y, Li M, Zhao A, Ren J, Qu X. Highly stable and reusable imprinted artificial antibody used for in situ detection and disinfection of pathogens. Chem Sci. 2015;6:2822–6. https://doi.org/10.1039/c5sc00489f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Haupt K. Imprinted polymers - tailor-made mimics of antibodies and receptors. Chem Commun. 2003;2:171–8. https://doi.org/10.1039/b207596b

  60. Xue X, Pan J, Xie H, Wang J, Zhang S. Specific recognition of Staphylococcus aureus by Staphylococcus aureus protein A-imprinted polymers. React Funct Polym. 2009;69:159–64. https://doi.org/10.1016/j.reactfunctpolym.2008.12.013.

    Article  CAS  Google Scholar 

  61. Khan MAR, Moreira FTC, Riu J, MG FS. Plastic antibody for the electrochemical detection of bacterial surface proteins. Sensors Actuators B Chem. 2016;233:697–704. https://doi.org/10.1016/j.snb.2016.04.075.

    Article  CAS  Google Scholar 

  62. Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C. An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol Adv. 2010;28:232–54. https://doi.org/10.1016/j.biotechadv.2009.12.004.

    Article  CAS  PubMed  Google Scholar 

  63. Kintzios S, Banerjee P. Mammalian cell-based sensors for high throughput screening for detecting chemical residues, pathogens, and toxins in food. In: Bhunia AK, kim MS, Taitt CR, editors. High throughput screening for food safety assessment: biosensor technologies, hyperspectral imaging and practical applications. Cambridge: Woodhead Publishing; 2015. pp. 123-146.

  64. Wu W, Yu C, Wang Q, Zhao F, He H, Liu C, et al. Research advances of DNA aptasensors for foodborne pathogen detection. Crit Rev Food Sci Nutr. 2020;60:2353–68. https://doi.org/10.1080/10408398.2019.1636763.

    Article  CAS  PubMed  Google Scholar 

  65. Janczuk-Richter M, Marinović I, Niedziółka-Jönsson J, Szot-Karpińska K. Recent applications of bacteriophage-based electrodes: a mini-review. Electrochem Commun. 2019;99:11–5. https://doi.org/10.1016/j.elecom.2018.12.011.

    Article  CAS  Google Scholar 

  66. Farooq U, Yang Q, Ullah MW, Wang S. Bacterial biosensing: recent advances in phage-based bioassays and biosensors. Biosens Bioelectron. 2018;118:204–16. https://doi.org/10.1016/j.bios.2018.07.058.

    Article  CAS  PubMed  Google Scholar 

  67. Saylan Y, Yilmaz F, Özgür E, Derazshamshir A, Yavuz H, Denizli A. Molecular imprinting of macromolecules for sensor applications. Sensors. 2017;17:898. https://doi.org/10.3390/s17040898.

    Article  CAS  PubMed Central  Google Scholar 

  68. Mugo SM, Lu W, Dhanjai D. A pathogen imprinted hybrid polymer capacitive sensor for selective Escherichia coli detection. Med Devices Sensors. 2020;3:e10071. https://doi.org/10.1002/mds3.10071.

  69. Ertürk G, Lood R. Bacteriophages as biorecognition elements in capacitive biosensors: phage and host bacteria detection. Sensors Actuators B Chem. 2018;258:535–43. https://doi.org/10.1016/j.snb.2017.11.117.

  70. van Grinsven B, Eersels K, Akkermans O, Ellermann S, Kordek A, Peeters M, et al. Label-free detection of Escherichia coli based on thermal transport through surface imprinted polymers. ACS Sensors. 2016;1:1140–7. https://doi.org/10.1021/acssensors.6b00435.

  71. Cornelis P, Givanoudi S, Yongabi D, Iken H, Duwé S, Deschaume O, et al. Sensitive and specific detection of E. coli using biomimetic receptors in combination with a modified heat-transfer method. Biosens Bioelectron. 2019;136:97–105. https://doi.org/10.1016/j.bios.2019.04.026.

  72. Yilmaz E, Majidi D, Ozgur E, Denizli A. Whole cell imprinting based Escherichia coli sensors: a study for SPR and QCM. Sensors Actuators B Chem. 2015;209:714–21. https://doi.org/10.1016/j.snb.2014.12.032.

  73. Ait Lahcen A, Arduini F, Lista F, Amine A. Label-free electrochemical sensor based on spore-imprinted polymer for Bacillus cereus spore detection. Sensors Actuators B Chem. 2018;276:114–20. https://doi.org/10.1016/j.snb.2018.08.031.

  74. Malhotra BD, Ali MA. Nanomaterials in biosensors: fundamentals and applications. In: Malhotra BD, Ali MA, editors. Nanomaterials for biosensors. Amsterdam: William Andrew Publishing; 2018. pp. 1–74.

  75. Damborský P, Švitel J, Katrlík J. Optical biosensors. Essays Biochem. 2016;60:91–100. https://doi.org/10.1042/EBC20150010.

  76. Yang Q, Li J, Wang X, Peng H, Xiong H, Chen L. Strategies of molecular imprinting-based fluorescence sensors for chemical and biological analysis. Biosens Bioelectron. 2018;112:54–71. https://doi.org/10.1016/j.bios.2018.04.028.

  77. Shan X, Yamauchi T, Yamamoto Y, Niyomdecha S, Ishiki K, Le DQ, et al. Spontaneous and specific binding of enterohemorrhagic Escherichia coli to overoxidized polypyrrole-coated microspheres. Chem Commun. 2017;53:3890–3. https://doi.org/10.1039/c7cc00244k.

  78. Shan X, Yamauchi T, Yamamoto Y, Shiigi H, Nagaoka T. A rapid and specific bacterial detection method based on cell-imprinted microplates. Analyst. 2018;143:1568–74. https://doi.org/10.1039/c7an02057k.

    Article  CAS  PubMed  Google Scholar 

  79. Gültekin A, Ersöz A, Hür D, Sariözlü NY, Denizli A, Say R. Gold nanoparticles having dipicolinic acid imprinted nanoshell for Bacillus cereus spores recognition. Appl Surf Sci. 2009;256:142–8. https://doi.org/10.1016/j.apsusc.2009.07.097.

  80. Subramanian A, Irudayaraj J, Ryan T. A mixed self-assembled monolayer-based surface plasmon immunosensor for detection of E. coli O157:H7. Biosens Bioelectron. 2006;21:998–1006. https://doi.org/10.1016/j.bios.2005.03.007.

    Article  CAS  PubMed  Google Scholar 

  81. Subramanian A, Irudayaraj J, Ryan T. Mono and dithiol surfaces on surface plasmon resonance biosensors for detection of Staphylococcus aureus. Sensors Actuators B Chem. 2006;114:192–8. https://doi.org/10.1016/j.snb.2005.04.030.

  82. Leonard P, Hearty S, Quinn J, O’Kennedy R. A generic approach for the detection of whole Listeria monocytogenes cells in contaminated samples using surface plasmon resonance. Biosens Bioelectron. 2004;19:1331–5. https://doi.org/10.1016/j.bios.2003.11.009.

  83. Zhang X, Tsuji S, Kitaoka H, Kobayashi H, Tamai M, Honjoh KI, et al. Simultaneous detection of Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes at a very low level using simultaneous enrichment broth and multichannel SPR biosensor. J Food Sci. 2017;82:2357–63. https://doi.org/10.1111/1750-3841.13843.

  84. Thévenot DR, Toth K, Durst RA, Wilson GS. Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron. 2001;16:121–31. https://doi.org/10.1016/S0956-5663(01)00115-4.

  85. Ayankojo AG, Reut J, Boroznjak R, Öpik A, Syritski V. Molecularly imprinted poly(meta-phenylenediamine) based QCM sensor for detecting amoxicillin. Sensors Actuators B Chem. 2018;258:766–74. https://doi.org/10.1016/j.snb.2017.11.194.

    Article  CAS  Google Scholar 

  86. Lin TY, Hu CH, Chou TC. Determination of albumin concentration by MIP-QCM sensor. Biosens Bioelectron. 2004;20:75–81. https://doi.org/10.1016/j.bios.2004.01.028.

  87. Gültekin A, Karanfil G, Kuş M, Sönmezoǧlu S, Ri S. Preparation of MIP-based QCM nanosensor for detection of caffeic acid. Talanta. 2014;119:533–7. https://doi.org/10.1016/j.talanta.2013.11.053.

  88. Hussain M, Kotova K, Lieberzeit PA. Molecularly imprinted polymer nanoparticles for formaldehyde sensing with QCM. Sensors. 2016;16:1011. https://doi.org/10.3390/s16071011.

  89. Casadio S, Lowdon JW, Betlem K, Ueta JT, Foster CW, Cleij TJ, et al. Development of a novel flexible polymer-based biosensor platform for the thermal detection of noradrenaline in aqueous solutions. Chem Eng J. 2017;315:459–68. https://doi.org/10.1016/j.cej.2017.01.050.

    Article  CAS  Google Scholar 

  90. Peeters MM, Van Grinsven B, Foster CW, Cleij TJ, Banks CE. Introducing thermal wave transport analysis (TWTA): a thermal technique for dopamine detection by screen-printed electrodes functionalized with molecularly imprinted polymer (MIP) particles. Molecules. 2016;21:552. https://doi.org/10.3390/molecules21050552.

    Article  CAS  PubMed Central  Google Scholar 

  91. Betlem K, Mahmood I, Seixas RD, Sadiki I, Raimbault RLD, Foster CW, et al. Evaluating the temperature dependence of heat-transfer based detection: a case study with caffeine and molecularly imprinted polymers as synthetic receptors. Chem Eng J. 2019;359:505–17. https://doi.org/10.1016/j.cej.2018.11.114.

    Article  CAS  Google Scholar 

  92. Steen Redeker E, Eersels K, Akkermans O, Royakkers J, Dyson S, Nurekeyeva K, et al. Biomimetic bacterial identification platform based on thermal wave transport analysis (TWTA) through surface-imprinted polymers. ACS Infect Dis. 2017;3:388–97. https://doi.org/10.1021/acsinfecdis.7b00037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. van Grinsven B, Eersels K, Peeters M, Losada-Pérez P, Vandenryt T, Cleij TJ, et al. The heat-transfer method: a versatile low-cost, label-free, fast, and user-friendly readout platform for biosensor applications. ACS Appl Mater Interfaces. 2014;6:13309–18. https://doi.org/10.1021/am503667s.

  94. van Grinsven B, Betlem K, Cleij TJ, Banks CE, Peeters M. Evaluating the potential of thermal read-out techniques combined with molecularly imprinted polymers for the sensing of low-weight organic molecules. J Mol Recognit. 2017;30:e2563. https://doi.org/10.1002/jmr.2563.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the fund awarded to X.L. by McGill University new faculty start-up grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaonan Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interests.

Additional information

Published in the topical collection Analytical Chemistry for Infectious Disease Detection and Prevention with guest editors Chaoyong Yang and XiuJun (James) Li.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wang, Y. & Lu, X. Molecular imprinting technology for sensing foodborne pathogenic bacteria. Anal Bioanal Chem 413, 4581–4598 (2021). https://doi.org/10.1007/s00216-020-03138-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-03138-x

Keywords

Navigation