Skip to main content
Log in

Analysis of low-molecular-weight metabolites in stomach cancer cells by a simplified and inexpensive GC/MS metabolomics method

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

GC/MS coupled metabolomics analysis, using a simplified and much less expensive silylation process with trimethylsilyl cyanide (TMSCN), was conducted to investigate metabolic abnormalities in stomach cancer cells. Under optimized conditions for derivatization by TMSCN and methanol extraction, 228 metabolites were detected using GC/MS spectrometry analysis, and 89 metabolites were identified using standard compounds and the NIST database. Ten metabolite levels were found to be lower in stomach cancer cells relative to normal cells. Among those ten metabolites, four metabolites—ribose, proline, pyroglutamic acid, and glucose—were known to be linked to cancers. In particular, pyroglutamic acid level showed a drastic reduction of 22-fold in stomach cancer cells. Since glutamine and glutamic acid are known to undergo cyclization to pyroglutamic acid, the 22-fold reduction might be the actual reduction in the levels of glutamine and/or glutamic acid—both known to be cancer-related. Hence, the marked reduction in pyroglutamic acid level might serve as a biomarker to aid early detection of stomach cancer.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  PubMed  Google Scholar 

  2. Li XP, Li H, Zhang R, Liu J, Liu J. MicroRNA-449a inhibits proliferation and induces apoptosis by directly repressing E2F3 in gastric cancer. Cell Physiol Biochem. 2015;35(5):2033–42.

    Article  PubMed  CAS  Google Scholar 

  3. Allemani C, Weir HK, Carreira H, Harewood R, Spika D, Wang XS, et al. Global surveillance of cancer survival 1995–2009: analysis of individual data for 25676887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet. 2015;385(9972):977–1010.

    Article  PubMed  Google Scholar 

  4. He B, Zhang HQ, Xiong SP, Lu S, Wan YY, Song RF. Changing patterns of serum CEA and CA199 for evaluating the response to first-line chemotherapy in patients with advanced gastric adenocarcinoma. Asian Pac J Cancer Prev. 2015;16(8):3111–6.

    Article  PubMed  Google Scholar 

  5. Li FX, Li SX, Wei LJ, Liang XF, Zhang H, Liu JT. The correlation between pre-operative serum tumor markers and lymph node metastasis in gastric cancer patients undergoing curative treatment. Biomarkers. 2013;18(7):632–7.

    Article  PubMed  CAS  Google Scholar 

  6. Xiao JC, He XY, Wang ZY, Hu JY, Sun F, Qi F, et al. Serum carbohydrate antigen 19-9 and prognosis of patients with gastric cancer. Tumour Biol. 2014;35(2):1331–4.

    Article  PubMed  CAS  Google Scholar 

  7. Zong L, Xing JP, Liu S, Liu ZQ, Song FR. Cell metabolomics reveals the neurotoxicity mechanism of cadmium in PC12 cells. Ecotox Environ Safe. 2018;147:26–33.

    Article  CAS  Google Scholar 

  8. Eckert MA, Coscia F, Chryplewicz A, Chang JW, Hernandez KM, Pan S, et al. Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts. Nature. 2019;569(7758):723–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Willmann L, Schlimpert M, Halbach S, Erbes T, Stickeler E, Kammerer B. Metabolic profiling of breast cancer: differences in central metabolism between subtypes of breast cancer cell lines. J Chromatogr B. 2015;1000:95–104.

    Article  CAS  Google Scholar 

  10. Xin H, Wang WQ, Yang ZW, Liu JX, Li S, Wang L, et al. Metabolomics studies of prostate cancer using gas chromatography-mass spectrometery. Transl Cancer Res. 2016;5(3):302–14.

    Article  CAS  Google Scholar 

  11. Pasikanti KK, Norasmara J, Cai SR, Mahendran R, Esuvaranathan K, Ho PC, et al. Metabolic footprinting of tumorigenic and nontumorigenic uroepithelial cells using two-dimensional gas chromatography time-of-flight mass spectrometry. Anal Bioanal Chem. 2010;398(3):1285–93.

    Article  PubMed  CAS  Google Scholar 

  12. Maria RM, Altei WF, Andricopulo AD, Becceneri AB, Cominetti MR, Venâncio T, et al. Characterization of metabolic profile of intact non-tumor and tumor breast cells by high-resolution magic angle spinning nuclear magnetic resonance spectroscopy. Anal Biochem. 2015;488:14–8.

    Article  PubMed  CAS  Google Scholar 

  13. Hakimi AA, Reznik E, Lee CH, Creighton CJ, Brannon AR, Luna A, et al. An integrated metabolic atlas of clear cell renal cell carcinoma. Cancer Cell. 2016;29(1):104–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Chen Y, Chen Z, Feng JH, Chen YB, Liao NS, Su Y, et al. Metabolic profiling of normal hepatocyte and hepatocellular carcinoma cells via 1H nuclear magnetic resonance spectroscopy. Cell Biol Int. 2018;42(4):425–34.

    Article  PubMed  CAS  Google Scholar 

  15. Phang JM, Liu W, Hancock CN, Fischer JW. Proline metabolism and cancer: emerging links to glutamine and collagen. Curr Opin Clin Nutr Metab Care. 2015;18(1):71–7.

    Article  PubMed  CAS  Google Scholar 

  16. Zhang J, Pavlova NN, Thompson CB. Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine. EMBO J. 2017;36(10):1302–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Krishnamurthy RV, Suryawanshi YR, Essani K. Nitrogen isotopes provide clues to amino acid metabolism in human colorectal cancer cells. Sci Rep. 2017;7:2562.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Choi YK, Park KG. Targeting glutamine metabolism for cancer treatment. Biomol Ther. 2018;26(1):19–28.

    Article  CAS  Google Scholar 

  19. Klupczynska A, Plewa S, Dyszkiewicz W, Kasprzyk M, Sytek N, Kokot ZJ. Determination of low-molecular-weight organic acids in non-small cell lung cancer with a new liquid chromatography–tandem mass spectrometry method. J Pharm Biomed Anal. 2016;129:299–309.

    Article  PubMed  CAS  Google Scholar 

  20. Castro FD, Benedetti M, Antonaci G, Coco LD, Pascali SAD, Muscella A, et al. Response of cisplatin resistant Skov-3 cells to [Pt(O,O’-Acac)(γ-Acac)(DMS)] treatment revealed by a metabolomic 1H-NMR study. Molecules. 2018;23(9):2301.

    Article  PubMed Central  CAS  Google Scholar 

  21. Abreu AC, Aguilera-Sáez LM, Peña A, García-Valverde M, Marín P, Valera DL, et al. NMR-based metabolomics approach to study the influence of different conditions of water irrigation and greenhouse ventilation on zucchini crops. J Agric Food Chem. 2018;66(31):8422–32.

    Article  PubMed  CAS  Google Scholar 

  22. Shen SS, Li LN, Song SY, Bai Y, Liu HW. Metabolomic study of mouse embryonic fibroblast cells in response to autophagy based on high resolution gas chromatography-mass spectrometry. Int J Mass Spectrom. 2018;434:215–21.

    Article  CAS  Google Scholar 

  23. Callejón-Leblic B, García-Barrera T, Pereira-Vega A, Gómez-Ariza JL. Metabolomic study of serum, urine and bronchoalveolar lavage fluid based on gas chromatography mass spectrometry to delve into the pathology of lung cancer. J Pharm Biomed Anal. 2019;163:122–9.

    Article  PubMed  CAS  Google Scholar 

  24. Pathakoti K, Goodla L, Manubolu M, Tencomnao T. Metabolic alterations and the protective effect of punicalagin against glutamate-induced oxidative toxicity in HT22 cells. Neurotox Res. 2017;31(4):521–31.

    Article  PubMed  CAS  Google Scholar 

  25. Li WJ, Hong B, Li Q, Li ZJ, Bi KS. An integrated serum and urinary metabonomic research of rhizoma curcumae-rhizoma sparganii drug pair in hysteromyoma rats based on UPLC-Q-TOF-MS analysis. J Ethnopharmacol. 2019;231:374–85.

    Article  PubMed  CAS  Google Scholar 

  26. Koek MM, Muilwijk B, van der Werf MJ, Hankemeier T. Microbial metabolomics with gas chromatography/mass spectrometry. Anal Chem. 2006;78:1272–81.

    Article  PubMed  CAS  Google Scholar 

  27. Koek MM, Bakels F, Engel W, van den Maagdenberg A, Ferrari MD, Coulier L, et al. Metabolic profiling of ultrasmall sample volumes with GC/MS: from microliter to nanoliter samples. Anal Chem. 2010;82:156–62.

    Article  PubMed  CAS  Google Scholar 

  28. Cao B, Li MJ, Zha WB, Zhao QJ, Gu RR, Liu LS, et al. Metabolomic approach to evaluating adriamycin pharmacodynamics and resistance in breast cancer cells. Metabolomics. 2013;9(5):960–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Ji J, Zhu P, Pi FW, Sun C, Jiang H, Sun JD, et al. GC-TOF/MS-based metabolomic strategy for combined toxicity effects of deoxynivalenol and zearalenone on murine macrophage ANA-1 cells. Toxicon. 2016;120:175–84.

    Article  PubMed  CAS  Google Scholar 

  30. Ibáñez C, Simó C, Palazoglu M, Cifuentes A. GC-MS based metabolomics of colon cancer cells using different extraction solvents. Anal Chim Acta. 2017;986:48–56.

    Article  PubMed  CAS  Google Scholar 

  31. Jiang GT, Kang HY, Yu YQ. Cross-platform metabolomics investigating the intracellular metabolic alterations of HaCaT cells exposed to phenanthrene. J Chromatogr B. 2017;1060:15–21.

    Article  CAS  Google Scholar 

  32. Yang J, Cheng JH, Sun B, Li HJ, Wu SM, Dong FT, et al. Untargeted and stable isotope-assisted metabolomic analysis of MDAMB-231 cells under hypoxia. Metabolomics. 2018;14(4):40.

    Article  PubMed  CAS  Google Scholar 

  33. Khakimov B, Motawia MS, Bak S, Engelsen SB. The use of trimethylsilyl cyanide derivatization for robust and broad-spectrum high-throughput gas chromatography-mass spectrometry based metabolomics. Anal Bioanal Chem. 2013;405(28):9193–205.

    Article  PubMed  CAS  Google Scholar 

  34. Moros G, Chatziioannou AC, Gika HG, Raikos N, Theodoridis G. Investigation of the derivatization conditions for GC-MS metabolomics of biological samples. Bioanalysis. 2017;9(1):53–65.

    Article  PubMed  CAS  Google Scholar 

  35. He Y, Zhang ZM, Ma P, Ji HC, Lu HM. GC-MS profiling of leukemia cells: an optimized preparation protocol for the intracellular metabolome. Anal Methods. 2018;10(10):1266–74.

    Article  CAS  Google Scholar 

  36. Ser Z, Liu XJ, Tang NN, Locasale JW. Extraction parameters for metabolomics from cultured cells. Anal Biochem. 2015;475:22–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Warburg O. On the origin of Cancer cells. Science. 1956;123:309–14.

    Article  PubMed  CAS  Google Scholar 

  38. Chen JL, Fan J, Lu XJ. CE-MS based on moving reaction boundary method for urinary metabolomic analysis of gastric cancer patients. Electrophoresis. 2014;35(7):1032–9.

    Article  PubMed  CAS  Google Scholar 

  39. Song H, Wang L, Liu HL, Wu XB, Wang HS, Liu ZH, et al. Tissue metabolomic fingerprinting reveals metabolic disorders associated with human gastric cancer morbidity. Oncol Rep. 2011;26(2):431–8.

    PubMed  CAS  Google Scholar 

  40. Jiang WJ, Zhou LY, Lin SR, Li Y, Xiao SY, Liu J, et al. Metabolic profiles of gastric cancer cell lines with different degrees of differentiation. Int J Clin Exp Pathol. 2018;11(2):869–75.

    PubMed  PubMed Central  Google Scholar 

  41. Kim HY, Lee H, Kim SH, Jin H, Bae J, Choi HK. Discovery of potential biomarkers in human melanoma cells with different metastatic potential by metabolic and lipidomic profiling. Sci Rep. 2017;7:8864.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Tanner JJ, Fendt SM, Becker DF. The proline cycle as a potential cancer therapy target. Biochemistry. 2018;57(25):3433–44.

    Article  PubMed  CAS  Google Scholar 

  43. Purwaha P, Silva LP, Hawke DH, Weinstein JN, Lorenzi PL. An artifact in LC-MS/MS measurement of glutamine and glutamic acid: in-source cyclization to pyroglutamic acid. Anal Chem. 2014;86(12):5633–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Gowda GAN, Gowda YN, Raftery D. Massive glutamine cyclization to pyroglutamic acid in human serum discovered using NMR spectroscopy. Anal Chem. 2015;87(7):3800–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The project was supported by the National Natural Science Foundation of China (No. 21772180) and Key Scientific Research Project of Universities, Department of Education of Henan Province, China (No. 20A350016). All authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by M Dai, T Ma, Y Niu, MM Zhang, ZW Zhu and SM Wang. The first draft of the manuscript was written by M Dai. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shaomin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human participants or animals.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 1.91 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, M., Ma, T., Niu, Y. et al. Analysis of low-molecular-weight metabolites in stomach cancer cells by a simplified and inexpensive GC/MS metabolomics method. Anal Bioanal Chem 412, 2981–2991 (2020). https://doi.org/10.1007/s00216-020-02543-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02543-6

Keywords

Navigation