Skip to main content
Log in

The use of trimethylsilyl cyanide derivatization for robust and broad-spectrum high-throughput gas chromatography–mass spectrometry based metabolomics

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Reproducible and quantitative gas chromatography–mass spectrometry (GC-MS)-based metabolomics analysis of complex biological mixtures requires robust and broad-spectrum derivatization. We have evaluated derivatization of complex metabolite mixtures using trimethylsilyl cyanide (TMSCN) and the most commonly used silylation reagent N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA). For the comparative analysis, two metabolite mixtures, a standard complex mixture of 35 metabolites covering a range of amino acids, carbohydrates, small organic acids, phenolic acids, flavonoids and triterpenoids, and a phenolic extract of blueberry fruits were used. Four different derivatization methods, (1) direct silylation using TMSCN, (2) methoximation followed by TMSCN (M-TMSCN), (3) direct silylation using MSTFA, and (4) methoximation followed by MSTFA (M-MSTFA) were compared in terms of method sensitivity, repeatability, and derivatization reaction time. The derivatization methods were observed at 13 different derivatization times, 5 min to 60 h, for both metabolite mixtures. Fully automated sample derivatization and injection enabled excellent repeatability and precise method comparisons. At the optimal silylation times, peak intensities of 34 out of 35 metabolites of the standard mixture were up to five times higher using M-TMSCN compared with M-MSTFA. For direct silylation of the complex standard mixture, the TMSCN method was up to 54 times more sensitive than MSTFA. Similarly, all the metabolites detected from the blueberry extract showed up to 8.8 times higher intensities when derivatized using TMSCN than with MSTFA. Moreover, TMSCN-based silylation showed fewer artifact peaks, robust profiles, and higher reaction speed as compared with MSTFA. A method repeatability test revealed the following robustness of the four methods: TMSCN > M-TMSCN > M-MSTFA > MSTFA.

Improved GC-MS profiling of Complex Biological Mixtures by TMSCN based Derivatization

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BSA:

Bis(trimethylsilyl)acetamide

BSTFA:

N,O-Bis(trimethylsilyl)trifluoroacetamide

EI:

Electron impact

HCN:

Hydrogen cyanide

MEOX:

Methoxiamine

M-MSTFA:

Methoximation followed by MSTFA-based silylation

M-TMSCN:

Methoximation followed by TMSCN-based silylation

MPS:

Multi-purpose sampler

MSTFA:

N-methyl-N-(trimethylsilyl)trifluoroacetamide

PARAFAC2:

Parallel Factor Analysis 2

PCA:

Principal component analysis

RI:

Retention index

TMCS:

Trimethylchlorosilane

TMS:

Trimethylsilyl

TMSCN:

Trimethylsilyl cyanide

References

  1. Pasikanti KK, Ho P, Chan E (2008) J Chromatogr B-Anal Technol Biomed Life Sci 871:202–211

    Article  CAS  Google Scholar 

  2. Gu Q, David F, Lynen F, Rumpel K, Dugardeyn J, Van Der Straeten D, Xu G, Sandra P (2011) J Chromatogr A 1218:3247–3254

    Article  CAS  Google Scholar 

  3. Fiehn O (2008) Trac-Trends Anal Chem 27:261–269

    Article  CAS  Google Scholar 

  4. Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L (2000) Plant J 23:131–142

    Article  CAS  Google Scholar 

  5. Fiehn O, Kopka J, Trethewey RN, Willmitzer L (2000) Anal Chem 72:3573–3580

    Article  CAS  Google Scholar 

  6. Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Nat Protoc 1:387–396

    Article  CAS  Google Scholar 

  7. Poole CF (1978) Recent advances in the silylation of organic compounds for gas chromatography. In: Blau K, King G (eds) Handbook of derivatives for chromatography. Heydon & Son Inc, Philadelphia, PA, pp 152–200

    Google Scholar 

  8. Fales HM and Luukkain T (1965) Analytical Chemistry 37:955

  9. Horning MG, Moss AM, Horning EC (1968) Anal Biochem 22:284–294

    Article  CAS  Google Scholar 

  10. Gehrke CW, Nakamoto H, and Zumwalt RW (1969) Journal of Chromatography 45:24–51

    Google Scholar 

  11. Schweer H (1982) J Chromatogr 236:355–360

    Article  CAS  Google Scholar 

  12. Kanani H, Chrysanthopoulos PK, Klapa MI (2008) J Chromatogr B-Anal Technol Biomed Life Sci 871:191–201

    Article  CAS  Google Scholar 

  13. Poole CF (2013) J Chromatogr A 1296:2–14

    Article  CAS  Google Scholar 

  14. Little JL (1999) J Chromatogr A 844:1–22

    Article  CAS  Google Scholar 

  15. Chromatography Catalogue 1998–99, Regis Technologies, 1998; pp. 86–88

  16. GC Derivatization, Pierce 2003–2004. Applications handbook and catalog

  17. Gullberg J, Jonsson P, Nordstrom A, Sjostrom M, Moritz T (2004) Anal Biochem 331:283–295

    Article  CAS  Google Scholar 

  18. Danielsson APH, Moritz T, Mulder H, Spegel P (2012) Metabolomics 8:50–63

    Article  CAS  Google Scholar 

  19. Pierce AE (1968) Silylation of organic compounds. Pierce Chemicals Co, Rockford, IL, p 58

    Google Scholar 

  20. Kashutina MV, S. L. Ioffe, V. A. Tartakovskii (1975) Rassian Chem. Rev. 44, 733

    Google Scholar 

  21. Orata F (2012) Derivatization reactions and reagents for gas chromatography analysis, advanced gas chromatography—progress in agricultural, biomedical and industrial applications. In: Mustafa Ali Mohd (ed), InTech 2012. ISBN: 978-953-51-0298-4

  22. Summer LH, Parker GA, Lloyd NC, Frey CL, Michael KW (1967) J Amer Chem Soc 89:857

    Article  Google Scholar 

  23. Prasod H (2002) Resonance 7:48

    Article  Google Scholar 

  24. Pike RM (1961) J Org Chem 26:232

    Article  CAS  Google Scholar 

  25. Hulshoff A, Lingeman H (1984) J Pharm Biomed Anal 2:337–380

    Article  CAS  Google Scholar 

  26. Birkofer L and Brokmeie D (1968) Tetrahedron Letters 9:1325–1328

    Google Scholar 

  27. Matsukawa S, Fujikawa S (2012) Tetrahedron Lett 53:1075–1077

    Article  CAS  Google Scholar 

  28. Mai K, Patil G (1986) J Org Chem 51:3545–3548

    Article  CAS  Google Scholar 

  29. Riggio PP, Karasiewicz RJ, Rosen P, Toome V (1992) J Chromatogr Sci 30:29–31

    Article  CAS  Google Scholar 

  30. Zadernowski R, Naczk M, Nesterowicz J (2005) J Agric Food Chem 53:2118–2124

    Article  CAS  Google Scholar 

  31. Amigo JM, Popielarz MJ, Callejon RM, Morales ML, Troncoso AM, Petersen MA, Toldam-Andersen TB (2010) J Chromatogr A 1217:4422–4429

    Article  CAS  Google Scholar 

  32. Khakimov B, Amigo JM, Bak S, Engelsen SB (2012) J chromatogr A 1266:84–94

    Article  CAS  Google Scholar 

  33. Hotelling H (1933) J Educ Psychol 24:417–441

    Article  Google Scholar 

  34. Vandendool H and Kratz PD (1963) Journal of Chromatography 11:463–471

    Google Scholar 

  35. Skov T, Bro R (2008) Anal Bioanal Chem 390:281–285

    Article  CAS  Google Scholar 

  36. Ono M, Koto M, Komatsu H, Igoshi K, Kobayashi H, Ito Y, Nohara T (2004) Food Sci Technol Res 10:56–59

    Article  CAS  Google Scholar 

  37. Szakiel A, Paczkowski C, Koivuniemi H, Huttunen S (2012) J Agric Food Chem 60:4994–5002

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Faculty of Science for support to the elite-research area “Metabolomics and bioactive compounds” with a PhD stipendium to B. Khakimov and The Ministry of Science and Technology for a grant to University of Copenhagen (S.B. Engelsen) with the title “Metabolomics infrastructure” under which the GC-MS was acquired.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bekzod Khakimov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 976 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khakimov, B., Motawia, M.S., Bak, S. et al. The use of trimethylsilyl cyanide derivatization for robust and broad-spectrum high-throughput gas chromatography–mass spectrometry based metabolomics. Anal Bioanal Chem 405, 9193–9205 (2013). https://doi.org/10.1007/s00216-013-7341-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7341-z

Keywords

Navigation