Skip to main content
Log in

Polydopamine: surface coating, molecular imprinting, and electrochemistry—successful applications and future perspectives in (bio)analysis

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Dopamine oxidation and self-polymerization have recently attracted great interest arising from the versatile chemistry of this endogenous catecholamine. Particularly interesting are the applications of polydopamine for surface coating, molecular imprinting, and electrochemistry, which are reviewed here, covering the broad fields of medicine, materials science, and (bio)analytical chemistry. Nonetheless, the peculiar physicochemical properties of dopamine and polydopamine, due to the redox potential of the catechol moiety, are not fully exploited. We have confidence in increasing the applications of dopamine through a large variety of research approaches, including the use of naturally occurring or synthetic dopamine analogues and copolymers. Accordingly, our efforts in this direction are focused on proposing a role for polydopamine in quantitative applications, evaluating analytical performance, cost, reproducibility, and versatility of the methods developed, and also revisiting standard (bio)analytical platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Li Y, Liu M, Xiang C, Xie Q, Yao S. Electrochemical quartz crystal microbalance study on growth and property of the polymer deposit at gold electrodes during oxidation of dopamine in aqueous solutions. Thin Solid Films. 2006;497(1–2):270–8. https://doi.org/10.1016/j.tsf.2005.10.048.

    Article  CAS  Google Scholar 

  2. Liu K, Wei WZ, Zeng JX, Liu XY, Gao YP. Application of a novel electrosynthesized polydopamine-imprinted film to the capacitive sensing of nicotine. Anal Bioanal Chem. 2006;385(4):724–9. https://doi.org/10.1007/s00216-006-0489-z.

    Article  CAS  PubMed  Google Scholar 

  3. Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science. 2007;318(5849):426–30. https://doi.org/10.1126/science.1147241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hawley MD, Tatawawadi SV, Piekarski S, Adams RN. Electrochemical studies of the oxidation pathways of catecholamines. J Am Chem Soc. 1967;89(2):447–50. https://doi.org/10.1021/ja00978a051.

    Article  CAS  PubMed  Google Scholar 

  5. Saraji M, Bagheri A. Electropolymerization of indole and study of electrochemical behavior of the polymer in aqueous solutions. Synth Met. 1998;98(1):57–63. https://doi.org/10.1016/S0379-6779(98)00151-9.

    Article  CAS  Google Scholar 

  6. Yang J, Stuart MAC, Kamperman M. Jack of all trades: versatile catechol crosslinking mechanisms. Chem Soc Rev. 2014;43(24):8271–98. https://doi.org/10.1039/c4cs00185k.

    Article  CAS  PubMed  Google Scholar 

  7. Ryu JH, Messersmith PB, Lee H. Polydopamine surface chemistry: a decade of discovery. ACS Appl Mater Interfaces. 2018;10(9):7523–40. https://doi.org/10.1021/acsami.7b19865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Qiu WZ, Yang HC, Xu ZK. Dopamine-assisted co-deposition: An emerging and promising strategy for surface modification. Adv Colloid Interf Sci. 2018;256:111–25. https://doi.org/10.1016/j.cis.2018.04.011.

    Article  CAS  Google Scholar 

  9. Palladino P, Brittoli A, Pascale E, Minunni M, Scarano S. Colorimetric determination of total protein content in serum based on the polydopamine/protein adsorption competition on microplates. Talanta. 2019;198:15–22. https://doi.org/10.1016/j.talanta.2019.01.095.

  10. Wang JG, Hua X, Li M, Long YT. Mussel-inspired polydopamine functionalized plasmonic nanocomposites for single-particle catalysis. ACS Appl Mater Interfaces. 2017;9(3):3016–23. https://doi.org/10.1021/acsami.6b14689.

    Article  CAS  PubMed  Google Scholar 

  11. Scarano S, Pascale E, Palladino P, Fratini E, Minunni M. Determination of fermentable sugars in beer wort by gold nanoparticles@polydopamine: a layer-by-layer approach for localized surface plasmon resonance measurements at fixed wavelength. Talanta. 2018;183:24–32. https://doi.org/10.1016/j.talanta.2018.02.044.

    Article  CAS  PubMed  Google Scholar 

  12. Scarano S, Palladino P, Pascale E, Brittoli A, Minunni M. Colorimetric determination of p-nitrophenol on ELISA microwells modified with an adhesive polydopamine nanofilm containing catalytically active gold nanoparticles. Microchim Acta. 2019;186(3):146. https://doi.org/10.1007/s00604-019-3259-2.

    Article  CAS  Google Scholar 

  13. Wei Q, Zhang F, Li J, Li B, Zhao C. Oxidant-induced dopamine polymerization for multifunctional coatings. Polym Chem. 2010;1:1430–3. https://doi.org/10.1039/c0py00215a.

    Article  CAS  Google Scholar 

  14. Hong SH, Hong S, Ryou MH, Choi JW, Kang SM, Lee H. Sprayable ultrafast polydopamine surface modifications. Adv Mater Interfaces. 2016;3:1500857. https://doi.org/10.1002/admi.201500857.

    Article  CAS  Google Scholar 

  15. Ponzio F, Barthès J, Bour J, Michel M, Bertani P, Hemmerlé J, et al. Oxidant control of polydopamine surface chemistry in acids: a mechanism-based entry to superhydrophilic-superoleophobic coatings. Chem Mater. 2016;28:4697–705. https://doi.org/10.1021/acs.chemmater.6b01587.

    Article  CAS  Google Scholar 

  16. Du X, Li L, Li J, Yang C, Frenkel N, Welle A, et al. UV-triggered dopamine polymerization: control of polymerization, surface coating, and photopatterning. Adv Mater. 2014;26:8029–33. https://doi.org/10.1002/adma.201403709.

    Article  CAS  PubMed  Google Scholar 

  17. Lee M, Lee SH, Oh IK, Lee H. Microwave-accelerated rapid, chemical oxidant-free, material-independent surface chemistry of poly(dopamine). Small. 2017;13:1600443. https://doi.org/10.1002/smll.201600443.

    Article  CAS  Google Scholar 

  18. Li H, Jia Y, Peng H, Li J. Recent developments in dopamine-based materials for cancer diagnosis and therapy. Adv Colloid Interf Sci. 2018;252:1–20. https://doi.org/10.1016/j.cis.2018.01.001.

    Article  CAS  Google Scholar 

  19. Barclay TG, Hegab HM, Clarke SR, Ginic-Markovic M. Versatile surface modification using polydopamine and related polycatecholamines: chemistry, structure, and applications. Adv Mater Interfaces. 2017;4(19):1601192. https://doi.org/10.1002/admi.201601192.

    Article  CAS  Google Scholar 

  20. Palladino P, Minunni M, Scarano S. Cardiac Troponin T capture and detection in real-time via epitope-imprinted polymer and optical biosensing. Biosens Bioelectron. 2018;106:93–8. https://doi.org/10.1016/j.bios.2018.01.068.

    Article  CAS  PubMed  Google Scholar 

  21. Che D, Cheng J, Ji Z, Zhang S, Li G, Sun Z, et al. Recent advances and applications of polydopamine-derived adsorbents for sample pretreatment. Trends Anal Chem. 2017;97:1–14. https://doi.org/10.1016/j.trac.2017.08.002.

    Article  CAS  Google Scholar 

  22. Chen D, Mei Y, Hu W, Li CM. Electrochemically enhanced antibody immobilization on polydopamine thin film for sensitive surface plasmon resonance immunoassay. Talanta. 2018;182:470–5. https://doi.org/10.1016/j.talanta.2018.02.038.

    Article  CAS  PubMed  Google Scholar 

  23. Li N, Liu YJ, Liu F, Luo MF, Wan YC, Huang Z, et al. Bio-inspired virus imprinted polymer for prevention of viral infections. Acta Biomater. 2017;51:175–83. https://doi.org/10.1016/j.actbio.2017.01.017.

    Article  CAS  PubMed  Google Scholar 

  24. Wulff G. Molecular recognition in polymers prepared by imprinting with templates. In: Ford WE (ed) Polymeric reagents and catalysis. ACS symposium series 308, Washington: American Chemical Society; 1986. p. 186–230. https://doi.org/10.1021/bk-1986-0308.ch009.

  25. Zamora-Galvez A, Morales-Narváez E, Mayorga-Martinez CC, Merkoçi A. Nanomaterials connected to antibodies and molecularly imprinted polymers as bio/receptors for bio/sensor applications. Appl Mater Today. 2017;9:387–401. https://doi.org/10.1016/j.apmt.2017.09.006.

    Article  Google Scholar 

  26. Dabrowski M, Lach P, Cieplak M, Kutner W. Nanostructured molecularly imprinted polymers for protein chemosensing. Biosens Bioelectron. 2017;102:17–26. https://doi.org/10.1016/j.bios.2017.10.045.

    Article  CAS  PubMed  Google Scholar 

  27. Gui R, Jin H, Guo H, Wang Z. Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors. Biosens Bioelectron. 2018;100:56–70. https://doi.org/10.1016/j.bios.2017.08.058.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang J, Li B, Yue H, Wang J, Zheng Y. Highly selective and efficient imprinted polymers based on carboxyl-functionalized magnetic nanoparticles for the extraction of gallic acid from pomegranate rind. J Sep Sci. 2018;41(2):540–7. https://doi.org/10.1002/jssc.201700822.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang M, Zhang X, He X, Chen L, Zhang Y. A self-assembled polydopamine film on the surface of magnetic nanoparticles for specific capture of protein. Nanoscale. 2012;4(10):3141–7. https://doi.org/10.1039/c2nr30316g.

    Article  CAS  PubMed  Google Scholar 

  30. Wang XN, Liang RP, Meng XY, Qiu JD. One-step synthesis of mussel-inspired molecularly imprinted magnetic polymer as stationary phase for chip-based open tubular capillary electrochromatography enantioseparation. J Chromatogr A. 2014;1362:301–8. https://doi.org/10.1016/j.chroma.2014.08.044.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang YZ, Zhang JW, Wang CZ, Zhou LD, Zhang QH, Yuan CS. Polydopamine-coated magnetic molecularly imprinted polymers with fragment template for identification of Pulsatilla saponin metabolites in rat feces with UPLC-Q-TOF-MS. J Agric Food Chem. 2018;66(3):653–60. https://doi.org/10.1021/acs.jafc.7b05747.

    Article  CAS  PubMed  Google Scholar 

  32. Lv P, Xie D, Zhang Z. Magnetic carbon dots based molecularly imprinted polymers for fluorescent detection of bovine hemoglobin. Talanta. 2018;188:145–51. https://doi.org/10.1016/j.talanta.2018.05.068.

    Article  CAS  PubMed  Google Scholar 

  33. Hu X, Xie L, Guo J, Li H, Jiang X, Zhang Y, et al. Hydrophilic gallic acid–imprinted polymers over magnetic mesoporous silica microspheres with excellent molecular recognition ability in aqueous fruit juices. Food Chem. 2015;179:206–12. https://doi.org/10.1016/j.foodchem.2015.02.007.

    Article  CAS  PubMed  Google Scholar 

  34. Jia X, Xu M, Wang Y, Ran D, Yang S, Zhang M. Polydopamine-based molecular imprinting on silica-modified magnetic nanoparticles for recognition and separation of bovine hemoglobin. Analyst. 2013;138(2):651–8. https://doi.org/10.1039/c2an36313e.

    Article  CAS  PubMed  Google Scholar 

  35. Qiao L, Gan N, Hu F, Wang D, Lan H, Li T, et al. Magnetic nanospheres with a molecularly imprinted shell for the preconcentration of diethylstilbestrol. Microchim Acta. 2014;181(11–12):1341–51. https://doi.org/10.1007/s00604-014-1257-y.

    Article  CAS  Google Scholar 

  36. Gao R, Zhang L, Hao Y, Cui X, Liu D, Zhang M, et al. Novel polydopamine imprinting layers coated magnetic carbon nanotubes for specific separation of lysozyme from egg white. Talanta. 2015;144:1125–32. https://doi.org/10.1016/j.talanta.2015.07.090.

    Article  CAS  PubMed  Google Scholar 

  37. Wu W, Yang L, Zhao F, Zeng B. A vanillin electrochemical sensor based on molecularly imprinted poly (1-vinyl-3-octylimidazole hexafluoride phosphorus)−multi-walled carbon nanotubes@polydopamine–carboxyl single-walled carbon nanotubes composite. Sensors Actuators B Chem. 2017;239:481–7. https://doi.org/10.1016/j.snb.2016.08.041.

    Article  CAS  Google Scholar 

  38. Yin ZZ, Cheng SW, Xu LB, Liu HY, Huang K, Li L, et al. Highly sensitive and selective sensor for sunset yellow based on molecularly imprinted polydopamine-coated multi-walled carbon nanotubes. Biosens Bioelectron. 2018;100:565–70. https://doi.org/10.1016/j.bios.2017.10.010.

    Article  CAS  PubMed  Google Scholar 

  39. Yin Y, Yan L, Zhang Z, Wang J, Luo N. Polydopamine-coated magnetic molecularly imprinted polymer for the selective solid-phase extraction of cinnamic acid, ferulic acid and caffeic acid from radix scrophulariae sample. J Sep Sci. 2016;39(8):1480–8. https://doi.org/10.1002/jssc.201600026.

    Article  CAS  PubMed  Google Scholar 

  40. Zhu X, Li H, Liu H, Peng W, Zhong S, Wang Y. Halloysite-based dopamine-imprinted polymer for selective protein capture. J Sep Sci. 2016;39(12):2431–7. https://doi.org/10.1002/jssc.201600168.

    Article  CAS  PubMed  Google Scholar 

  41. Chen F, Zhao W, Zhang J, Kong J. Magnetic two-dimensional molecularly imprinted materials for the recognition and separation of proteins. Phys Chem Chem Phys. 2016;18(2):718–25. https://doi.org/10.1039/c5cp04218f.

    Article  CAS  PubMed  Google Scholar 

  42. Luo J, Jiang S, Liu X. Efficient one-pot synthesis of mussel-inspired molecularly imprinted polymer coated graphene for protein-specific recognition and fast separation. J Phys Chem C. 2013;117(36):18448–56. https://doi.org/10.1021/jp405171w.

    Article  CAS  Google Scholar 

  43. Tretjakov A, Syritski V, Reut J, Boroznjak R, Volobujeva O, Öpik A. Surface molecularly imprinted polydopamine films for recognition of immunoglobulin G. Microchim Acta. 2013;180(15–16):1433–42. https://doi.org/10.1007/s00604-013-1039-y.

    Article  CAS  Google Scholar 

  44. Turco A, Corvaglia S, Mazzotta E, Pompa PP, Malitesta C. Preparation and characterization of molecularly imprinted mussel inspired film as antifouling and selective layer for electrochemical detection of sulfamethoxazole. Sensors Actuators B Chem. 2018;255:3374–83. https://doi.org/10.1016/j.snb.2017.09.164.

    Article  CAS  Google Scholar 

  45. Zhou WH, Tang SF, Yao QH, Chen FR, Yang HH, Wang XR. A quartz crystal microbalance sensor based on mussel-inspired molecularly imprinted polymer. Biosens Bioelectron. 2010;26(2):585–9. https://doi.org/10.1016/j.bios.2010.07.024.

    Article  CAS  PubMed  Google Scholar 

  46. Hashemi-Moghaddam H, Kazemi-Bagsangani S, Jamili M, Zavareh S. Evaluation of magnetic nanoparticles coated by 5-fluorouracil imprinted polymer for controlled drug delivery in mouse breast cancer model. Int J Pharm. 2016;497(1–2):228–38. https://doi.org/10.1016/j.ijpharm.2015.11.040.

    Article  CAS  PubMed  Google Scholar 

  47. Ouyang R, Lei J, Ju H. Surface molecularly imprinted nanowire for protein specific recognition. Chem Commun. 2008;44:5761–3. https://doi.org/10.1039/b810248a.

    Article  CAS  Google Scholar 

  48. Liu Y, Liu L, He Y, He Q, Ma H. Quantum-dots-encoded-microbeads based molecularly imprinted polymer. Biosens Bioelectron. 2016;77:886–93. https://doi.org/10.1016/j.bios.2015.10.024.

    Article  CAS  PubMed  Google Scholar 

  49. Sun Y, Li Y, Xu J, Huang L, Qiu T, Zhong S. Interconnectivity of macroporous molecularly imprinted polymers fabricated by hydroxyapatite-stabilized Pickering high internal phase emulsions-hydrogels for the selective recognition of protein. Colloids Surf B. 2017;155:142–9. https://doi.org/10.1016/j.colsurfb.2017.04.009.

    Article  CAS  Google Scholar 

  50. Sun Y, Zhong S. Nanoscale trifunctional bovine hemoglobin for fabricating molecularly imprinted polydopamine via Pickering emulsions-hydrogels polymerization. Colloids Surf B. 2017;159:131–8. https://doi.org/10.1016/j.colsurfb.2017.07.069.

    Article  CAS  Google Scholar 

  51. Xu X, Liu R, Guo P, Luo Z, Cai X, Shu H, et al. Fabrication of a novel magnetic mesoporous molecularly imprinted polymer based on pericarpium granati-derived carrier for selective absorption of bromelain. Food Chem. 2018;256:91–7. https://doi.org/10.1016/j.foodchem.2018.02.118.

    Article  CAS  PubMed  Google Scholar 

  52. Gao R, Zhang L, Hao Y, Cui X, Tang Y. Specific removal of protein using protein imprinted polydopamine shells on modified amino-functionalized magnetic nanoparticles. RSC Adv. 2014;4(110):64514–24. https://doi.org/10.1039/c4ra07965e.

    Article  CAS  Google Scholar 

  53. Zhang F, Luo L, Gong H, Chen C, Cai C. A magnetic molecularly imprinted optical chemical sensor for specific recognition of trace quantities of virus. RSC Adv. 2018;8(56):3226228. https://doi.org/10.1039/c8ra06204h.

    Article  CAS  Google Scholar 

  54. Yang B, Gong H, Chen C, Chen X, Cai C. A virus resonance light scattering sensor based on mussel-inspired molecularly imprinted polymers for high sensitive and high selective detection of hepatitis A virus. Biosens Bioelectron. 2017;87:679–85. https://doi.org/10.1016/j.bios.2016.08.087.

    Article  CAS  PubMed  Google Scholar 

  55. Voccia D, Bettazzi F, Baydemir G, Palchetti I. Alkaline-phosphatase-based nanostructure assemblies for electrochemical detection of microRNAs. J Nanosci Nanotechnol. 2015;15(5):3378–84. https://doi.org/10.1166/jnn.2015.10201.

    Article  CAS  PubMed  Google Scholar 

  56. Baydemir G, Bettazzi F, Palchetti I, Voccia D. Strategies for the development of an electrochemical bioassay for TNF-alpha detection by using a non-immunoglobulin bioreceptor. Talanta. 2016;141:141–7. https://doi.org/10.1016/j.talanta.2016.01.021.

    Article  CAS  Google Scholar 

  57. Almeida LC, Correia JP, Viana AS. Electrochemical and optical characterization of thin polydopamine films on carbon surfaces for enzymatic sensors. Electrochim Acta. 2018;263:480–9. https://doi.org/10.1016/j.electacta.2018.01.077.

    Article  CAS  Google Scholar 

  58. Amiri M, Amali E, Nematollahzadeh A, Salehniya H. Poly-dopamine films: voltammetric sensor for pH monitoring. Sensors Actuators B Chem. 2016;228:53–8. https://doi.org/10.1016/j.snb.2016.01.012.

    Article  CAS  Google Scholar 

  59. Ismail I, Okajima T, Kawauchi S, Ohsaka T. Studies on the early oxidation process of dopamine by electrochemical measurements and quantum chemical calculations. Electrochim Acta. 2016;211:777–86. https://doi.org/10.1016/j.electacta.2016.05.056.

    Article  CAS  Google Scholar 

  60. Ball V, Del Frari D, Toniazzo V, Ruch D. Kinetics of polydopamine film deposition as a function of pH and dopamine concentration: Insights in the polydopamine deposition mechanism. J Colloid Interface Sci. 2012;386(1):366–72. https://doi.org/10.1016/j.jcis.2012.07.030.

    Article  CAS  PubMed  Google Scholar 

  61. Lee H, Rho J, Messersmith PB. Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired, coatings. Adv Mater. 2009;21(4):431–4. https://doi.org/10.1002/adma.200801222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dai M, Huang T, Chao L, Xie Q, Tan Y, Chen C, et al. Horseradish peroxidase-catalyzed polymerization of l-DOPA for mono-/bi-enzyme immobilization and amperometric biosensing of H2O2 and uric acid. Talanta. 2016;149:117–23. https://doi.org/10.1016/j.talanta.2015.11.047.

    Article  CAS  PubMed  Google Scholar 

  63. Chen T, Xu Y, Wei S, Li A, Huang L, Liu J. A signal amplification system constructed by bi-enzymes and bi-nanospheres for sensitive detection of norepinephrine and miRNA. Biosens Bioelectron. 2019;124–125:224–32. https://doi.org/10.1016/j.bios.2018.10.030.

    Article  CAS  PubMed  Google Scholar 

  64. Huang KJ, Wang L, Wang HB, Gan T, Wu YY, Li J, et al. Electrochemical biosensor based on silver nanoparticles-polydopamine- graphene nanocomposite for sensitive determination of adenine and guanine. Talanta. 2013;114:43–8. https://doi.org/10.1016/j.talanta.2013.04.017.

    Article  CAS  PubMed  Google Scholar 

  65. Liu P, Bai FQ, Lin DW, Peng HP, Hu Y, Zheng YJ, et al. One-pot green synthesis of mussel-inspired myoglobin-gold nanoparticles-polydopamine-graphene polymeric bionanocomposite for biosensor application. J Electroanal Chem. 2016;764:104–9. https://doi.org/10.1016/j.jelechem.2016.01.020.

    Article  CAS  Google Scholar 

  66. Zhu Y, Lu S, Manohari AG, Dong X, Chen F, Xu W, et al. Polydopamine interconnected graphene quantum dots and gold nanoparticles for enzymeless H2O2 detection. J Electroanal Chem. 2017;796:75–81. https://doi.org/10.1016/j.jelechem.2017.04.017.

    Article  CAS  Google Scholar 

  67. Loget G, Wood JB, Cho K, Halpern AR, Corn RM. Electrodeposition of polydopamine thin films for DNA patterning and microarrays. Anal Chem. 2013;85(21):9991–5. https://doi.org/10.1021/ac4022743.

    Article  CAS  PubMed  Google Scholar 

  68. Wan Y, Zhang D, Wang Y, Qi P, Hou B. Direct immobilisation of antibodies on a bioinspired architecture as a sensing platform. Biosens Bioelectron. 2011;26(5):2595–600. https://doi.org/10.1016/j.bios.2010.11.013.

    Article  CAS  PubMed  Google Scholar 

  69. Wang L, Miao L, Yang H, Yu J, Xie Y, Xu L, et al. A novel nanoenzyme based on Fe3O4 nanoparticles@thionine-imprinted polydopamine for electrochemical biosensing. Sensors Actuators B Chem. 2017;253:108–14. https://doi.org/10.1016/j.snb.2017.06.132.

    Article  CAS  Google Scholar 

  70. Łuczak T. Preparation and characterization of the dopamine film electrochemically deposited on a gold template and its applications for dopamine sensing in aqueous solution. Electrochim Acta. 2008;53(19):5725–31. https://doi.org/10.1016/j.electacta.2008.03.052.

    Article  CAS  Google Scholar 

  71. Vatrál J, Boča R, Linert W. Oxidation properties of dopamine at and near physiological conditions. Monatsh Chem. 2015;146(11):1799–805. https://doi.org/10.1007/s00706-015-1560-2.

    Article  CAS  Google Scholar 

  72. Kanyong P, Rawlinson S, Davis J. Fabrication and electrochemical characterization of polydopamine redox polymer modified screen-printed carbon electrode for the detection of guanine. Sensors Actuators B Chem. 2016;233:528–34. https://doi.org/10.1016/j.snb.2016.04.099.

    Article  CAS  Google Scholar 

  73. Zangmeister RA, Morris TA, Tarlov MJ. Characterization of polydopamine thin films deposited at short times by autoxidation of dopamine. Langmuir. 2013;29(27):8619–28. https://doi.org/10.1021/la400587j.

    Article  CAS  PubMed  Google Scholar 

  74. Elgrishi N, Rountree KJ, McCarthy BD, Rountree ES, Eisenhart TT, Dempsey JL. A practical beginner’s guide to cyclic voltammetry. J Chem Educ. 2018;95(2):197–206. https://doi.org/10.1021/acs.jchemed.7b00361.

    Article  CAS  Google Scholar 

  75. Voccia D, Sosnowska M, Bettazzi F, Roscigno G, Fratini E, De Franciscis V, et al. Direct determination of small RNAs using a biotinylated polythiophene impedimetric genosensor. Biosens Bioelectron. 2017;87:1012–9. https://doi.org/10.1016/j.bios.2016.09.058.

    Article  CAS  PubMed  Google Scholar 

  76. Vernitskaya TYV, Efimov ON. Polypyrrole: a conducting polymer; its synthesis, properties and applications. Russ Chem Rev. 1997;66(5):443–57. https://doi.org/10.1070/RC1997v066n05ABEH000261.

    Article  Google Scholar 

  77. Sapurina I, Riede A, Stejskal J. In-situ polymerized polyaniline films: 3. Film formation. Synth Met. 2001;123(3):503–7. https://doi.org/10.1016/S0379-6779(01)00349-6.

    Article  CAS  Google Scholar 

  78. MacDiarmid AG. “Synthetic metals”: a novel role for organic polymers (Nobel lecture). Angew Chem Int Ed. 2001;40(14):2581–90.

    Article  CAS  Google Scholar 

  79. Zhou Y, Yin H, Sui C, Wang Y, Ai S. Photoelectrochemical detection of 5-hydroxymethylcytosine in genomic DNA based on M. HhaI methyltransferase catalytic covalent bonding. Chem Eng J. 2019;357:94–102. https://doi.org/10.1016/j.cej.2018.09.138.

    Article  CAS  Google Scholar 

  80. Yu Y, Huang Z, Zhou Y. Facile and highly sensitive photoelectrochemical biosensing platform based on hierarchical architectured polydopamine/tungsten oxide nanocomposite film. Biosens Bioelectron. 2019;126:1–6. https://doi.org/10.1016/j.bios.2018.10.026.

    Article  CAS  PubMed  Google Scholar 

  81. Bettazzi F, Laschi S, Voccia D, Gellini C, Pietraperzia G, Falciola L, et al. Ascorbic acid-sensitized Au nanorods-functionalized nanostructured TiO2 transparent electrodes for photoelectrochemical genosensing. Electrochim Acta. 2018;276:389–98. https://doi.org/10.1016/j.electacta.2018.04.146.

    Article  CAS  Google Scholar 

  82. Li J, Li X, Zhao Q, Jiang Z, Tadé M, Wang S, et al. Polydopamine-assisted decoration of TiO2 nanotube arrays with enzyme to construct a novel photoelectrochemical sensing platform. Sensors Actuators B Chem. 2018;255:133–9. https://doi.org/10.1016/j.snb.2017.06.168.

    Article  CAS  Google Scholar 

  83. Bettazzi F, Palchetti I. Photoelectrochemical genosensors for the determination of nucleic acid cancer biomarkers. Curr Opin Electrochem. 2018;12:51–9. https://doi.org/10.1016/j.coelec.2018.07.001.

    Article  CAS  Google Scholar 

  84. Wang R, Ma H, Zhang Y, Wang Q, Yang Z, Du B, et al. Photoelectrochemical sensitive detection of insulin based on CdS/polydopamine co-sensitized WO3 nanorod and signal amplification of carbon nanotubes@polydopamine. Biosens Bioelectron. 2017;96:345–50. https://doi.org/10.1016/j.bios.2017.05.029.

    Article  CAS  PubMed  Google Scholar 

  85. Çakıroğlu B, Özacar M. A self-powered photoelectrochemical glucose biosensor based on supercapacitor Co3O4-CNT hybrid on TiO2. Biosens Bioelectron. 2018;119:34–41. https://doi.org/10.1016/j.bios.2018.07.049.

    Article  CAS  PubMed  Google Scholar 

  86. Son EJ, Kim JH, Kim K, Park CB. Quinone and its derivatives for energy harvesting and storage materials. J Mater Chem A. 2016;4(29):11179–202. https://doi.org/10.1039/c6ta03123d.

    Article  CAS  Google Scholar 

  87. Nam HJ, Kim B, Ko MJ, Jin M, Kim JM, Jung DY. A new mussel-inspired polydopamine sensitizer for dye-sensitized solar cells: controlled synthesis and charge transfer. Chem Eur J. 2012;18(44):14000–7. https://doi.org/10.1002/chem.201202283.

    Article  CAS  PubMed  Google Scholar 

  88. Feng J, Li F, Li X, Wang Y, Fan D, Du B, et al. Label-free photoelectrochemical immunosensor for NT-proBNP detection based on La-CdS/3D ZnIn2S4/Au@ZnO sensitization structure. Biosens Bioelectron. 2018;117:773–80. https://doi.org/10.1016/j.bios.2018.07.015.

    Article  CAS  PubMed  Google Scholar 

  89. Karakouz T, Holder D, Goomanovsky M, Vaskevich A, Rubinstein I. Morphology and refractive index sensitivity of gold island films. Chem Mater. 2009;24(21):5875–85. https://doi.org/10.1021/cm902676d.

    Article  CAS  Google Scholar 

  90. Tesler AB, Chuntonov L, Karakouz T, Bendikov TA, Haran G, Vaskevich A, et al. Tunable localized plasmon transducers prepared by thermal dewetting of percolated evaporated gold films. J Phys Chem C. 2011;115:24642–52. https://doi.org/10.1021/jp209114j.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Ministry of Education, University and Research (MIUR) for financial support through the scientific program SIR2014 Scientific Independence of Young Researchers (RBSI1455LK), Horizon 2020, European Union funding for research and innovation, and Regione Toscana for the scientific program Plasmonic Biosensor Analysis of Nucleic Acid Biomarkers (PLABAN; D53D16002290009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Scarano.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry with guest editors Erin Baker, Kerstin Leopold, Francesco Ricci, and Wei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palladino, P., Bettazzi, F. & Scarano, S. Polydopamine: surface coating, molecular imprinting, and electrochemistry—successful applications and future perspectives in (bio)analysis. Anal Bioanal Chem 411, 4327–4338 (2019). https://doi.org/10.1007/s00216-019-01665-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01665-w

Keywords

Navigation