Skip to main content

Dopamine-Based Materials: Recent Advances in Synthesis Methods and Applications

  • Chapter
  • First Online:
Molecular Architectonics and Nanoarchitectonics

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Dopamine-based materials have attracted considerable interests due to their unique physicochemical properties including versatile adhesion property, high chemical reactivity, strong photothermal conversion capacity, excellent biocompatibility and biodegradability, etc. Since the discovery of oxidative self-polymerization of dopamine for preparation of polydopamine, different strategies have been employed to construct fruitful polydopamine-based materials, such as nanoparticles, core/shell nanoparticles, microcapsules, films, and hydrogels. Moreover, one-pot polydopamine-assisted co-deposition could facilitate the incorporation of functional molecules into the materials during the formation process of polydopamine, thus greatly simplifying the functionalization procedure of polydopamine. This chapter is devoted to introduce recent development in dopamine-based materials and their applications. First, an overview of the different methodologies for fabrication of dopamine-based materials is summarized. We outline various polydopamine-based materials constructed with different preparation strategies and novel materials prepared via the co-assembly strategy. Thereafter, we focus on the recent advances of emerging applications of dopamine-based materials in various fields ranging from cancer theranostics, bioimaging, self-adhesive bioelectronics to removal of heavy metal ions. Finally, we discuss the critical unsolved challenges in this field and some potential opportunities for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klein MO, Battagello DS, Cardoso AR et al (2019) Dopamine: functions, signaling, and association with neurological diseases. Cell Mol Neurobiol 39(1):31–59

    Article  Google Scholar 

  2. Lee H, Dellatore SM, Miller WM et al (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849):426–430

    Article  CAS  Google Scholar 

  3. Ju K-Y, Lee Y, Lee S et al (2011) Bioinspired polymerization of dopamine to generate melanin-like nanoparticles having an excellent free-radical-scavenging property. Biomacromolecules 12(3):625–632

    Article  CAS  Google Scholar 

  4. Amin DR, Sugnaux C, Lau KHA et al (2017) Size control and fluorescence labeling of polydopamine melanin-mimetic nanoparticles for intracellular imaging. Biomimetics 2(3):17

    Article  CAS  Google Scholar 

  5. Liu YL, Ai KL, Liu JH et al (2013) Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv Mater 25(9):1353–1359

    Article  CAS  Google Scholar 

  6. Qiang W, Li W, Li X et al (2014) Bioinspired polydopamine nanospheres: a superquencher for fluorescence sensing of biomolecules. Chem Sci 5(8):3018–3024

    Article  CAS  Google Scholar 

  7. Zhang X, Wang S, Xu L et al (2012c) Biocompatible polydopamine fluorescent organic nanoparticles: facile preparation and cell imaging. Nanoscale 4(18):5581–5584

    Article  CAS  Google Scholar 

  8. Hu J, Zhang X, Wen Z et al (2016) Asn-Gly-Arg-modified polydopamine-coated nanoparticles for dual-targeting therapy of brain glioma in rats. Oncotarget 7(45):73681–73696

    Article  Google Scholar 

  9. Zheng Q, Lin T, Wu H et al (2014) Mussel-inspired polydopamine coated mesoporous silica nanoparticles as pH-sensitive nanocarriers for controlled release. Int J Pharm 463(1):22–26

    Article  CAS  Google Scholar 

  10. Xiong W, Peng L, Chen H et al (2015) Surface modification of MPEG-b-PCL-based nanoparticles via oxidative self-polymerization of dopamine for malignant melanoma therapy. Int J Nanomedicine 10:2985–2996

    CAS  Google Scholar 

  11. Xu G, Yu X, Zhang J et al (2016) Robust aptamer-polydopamine-functionalized m-PLGA-TPGS nanoparticles for targeted delivery of docetaxel and enhanced cervical cancer therapy. Int J Nanomedicine 11:2953–2965

    CAS  Google Scholar 

  12. Lin Q, Huang X, Tang J et al (2013) Environmentally friendly, one-pot synthesis of folic acid-decorated graphene oxide-based drug delivery system. J Nanopart Res 15(12):2144

    Article  CAS  Google Scholar 

  13. Sharker SM, Kang EB, Shin C-I et al (2016) Near-infrared-active and pH-responsive fluorescent polymer-integrated hybrid graphene oxide nanoparticles for the detection and treatment of cancer. J Appl Polym Sci 133(32):43791

    Article  CAS  Google Scholar 

  14. Liu F, He X, Lei Z et al (2015a) Facile preparation of doxorubicin-loaded upconversion@polydopamine nanoplatforms for simultaneous in vivo multimodality imaging and chemophotothermal synergistic therapy. Adv Health Mater 4(4):559–568

    Article  CAS  Google Scholar 

  15. Liu T, Li S, Liu Y et al (2016) Mn-complex modified NaDyF4:Yb@NaLuF4:Yb, Er@polydopamine core-shell nanocomposites for multifunctional imaging-guided photothermal therapy. J Mater Chem B 4(15):2697–2705

    Article  CAS  Google Scholar 

  16. Ju K-Y, Lee S, Pyo J et al (2015) Bio-inspired development of a dual-mode nanoprobe for MRI and Raman imaging. Small 11(1):84–89

    Article  CAS  Google Scholar 

  17. Li C, Liu Z, Yao P (2016a) Gold nanoparticles coated with a polydopamine layer and dextran brush surface for diagnosis and highly efficient photothermal therapy of tumors. RSC Adv 6(39):33083–33091

    Article  CAS  Google Scholar 

  18. Wang S, Zhao X, Wang S et al (2016) Biologically inspired polydopamine capped gold nanorods for drug delivery and light-mediated cancer therapy. ACS Appl Mater Interf 8(37):24368–24384

    Article  CAS  Google Scholar 

  19. Zhang L, Su H, Cai J et al (2016) A multifunctional platform for tumor angiogenesis-targeted chemo-thermal therapy using polydopamine-coated gold nanorods. ACS Nano 10(11):10404–10417

    Article  CAS  Google Scholar 

  20. Du B, Gu X, Zhao W et al (2016) Hybrid of gold nanostar and indocyanine green for targeted imaging-guided diagnosis and phototherapy using low-density laser irradiation. J Mater Chem B 4(35):5842–5849

    Article  CAS  Google Scholar 

  21. Li D, Zhang Y, Wen S et al (2016b) Construction of polydopamine-coated gold nanostars for CT imaging and enhanced photothermal therapy of tumors: an innovative theranostic strategy. J Mater Chem B 4(23):4216–4226

    Article  CAS  Google Scholar 

  22. Kumar A, Kumar S, Rhim W-K et al (2014) Oxidative nanopeeling chemistry-based synthesis and photodynamic and photothermal therapeutic applications of plasmonic core-petal nanostructures. J Am Chem Soc 136(46):16317–16325

    Article  CAS  Google Scholar 

  23. Zhang M, Zhang X, He X et al (2012) A self-assembled polydopamine film on the surface of magnetic nanoparticles for specific capture of protein. Nanoscale 4(10):3141–3147

    Article  CAS  Google Scholar 

  24. Zhang X, Huang Q, Liu M et al (2015) Preparation of amine functionalized carbon nanotubes via a bioinspired strategy and their application in Cu2+ removal. Appl Surf Sci 343:19–27

    Article  CAS  Google Scholar 

  25. Zhang Q, Liao J, Liao M et al (2019) One-dimensional Fe7S8@C nanorods as anode materials for high-rate and long-life lithium-ion batteries. Appl Surf Sci 473:799–806

    Article  CAS  Google Scholar 

  26. Donath E, Sukhorukov GB, Caruso F et al (1998) Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew Chem Int Ed 37(16):2201–2205

    Article  Google Scholar 

  27. Jia Y, Li J (2019) Molecular assemblies of biomimetic microcapsules. Langmuir 35(26):8557–8564

    Article  CAS  Google Scholar 

  28. Chen X, Yan Y, Muellner M et al (2014) Engineering fluorescent poly(dopamine) capsules. Langmuir 30(10):2921–2925

    Article  CAS  Google Scholar 

  29. Cheng F-F, Zhang J-J, Xu F et al (2013) pH-sensitive polydopamine nanocapsules for cell imaging and drug delivery based on folate receptor targeting. J Biomed Nanotechnol 9(7):1155–1163

    Article  CAS  Google Scholar 

  30. Li H, Jia Y, Feng X et al (2017) Facile fabrication of robust polydopamine microcapsules for insulin delivery. J Colloid Interf Sci 487:12–19

    Article  CAS  Google Scholar 

  31. Xu H, Liu X, Wang D (2011) Interfacial basicity-guided formation of polydopamine hollow capsules in pristine o/w emulsions-toward understanding of emulsion template roles. Chem Mater 23(23):5105–5110

    Article  CAS  Google Scholar 

  32. Xue J, Zheng W, Wang L et al (2016) Scalable fabrication of polydopamine nanotubes based on curcumin crystals. ACS Biomater Sci Eng 2(4):489–493

    Article  CAS  Google Scholar 

  33. Yan D, Xu P, Xiang Q et al (2016) Polydopamine nanotubes: bio-inspired synthesis, formaldehyde sensing properties and thermodynamic investigation. J Mater Chem A 4(9):3487–3493

    Article  CAS  Google Scholar 

  34. Nuzzo RG, Allara DL (1983) Adsorption of bifunctional organic disulfides on gold surfaces. J Am Chem Soc 105(13):4481–4483

    Article  CAS  Google Scholar 

  35. Decher G, Hong JD (1991) Buildup of ultrathin multilayer films by a self-assembly process, 1 consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. In: Makromolekulare Chemie. Macromolecular symposia, Wiley online library, pp 321–327

    Google Scholar 

  36. Wei H, Ren J, Han B et al (2013) Stability of polydopamine and poly(DOPA) melanin-like films on the surface of polymer membranes under strongly acidic and alkaline conditions. Colloids Surf B Biointerfaces 110:22–28

    Article  CAS  Google Scholar 

  37. Kang SM, You I, Cho WK et al (2010) One-step modification of superhydrophobic surfaces by a mussel-inspired polymer coating. Angew Chem Int Ed 49(49):9401–9404

    Article  CAS  Google Scholar 

  38. Lv Y, Yang H-C, Liang H-Q et al (2015) Nanofiltration membranes via co-deposition of polydopamine/polyethylenimine followed by cross-linking. J Membr Sci 476:50–58

    Article  CAS  Google Scholar 

  39. Lv Y, Du Y, Qiu W-Z et al (2017) Nanocomposite membranes via the codeposition of polydopamine/polyethylenimine with silica nanoparticles for enhanced mechanical strength and high water permeability. ACS Appl Mater Interf 9(3):2966–2972

    Article  CAS  Google Scholar 

  40. Liu Y, Meng H, Konst S et al (2014b) Injectable dopamine-modified poly(ethylene glycol) nanocomposite hydrogel with enhanced adhesive property and bioactivity. ACS Appl Mater Interf 6(19):16982–16992

    Article  CAS  Google Scholar 

  41. Jia Z, Zeng Y, Tang P et al (2019) Conductive, tough, transparent, and self-healing hydrogels based on catechol-metal ion dual self-catalysis. Chem Mater 31(15):5625–5632

    Article  CAS  Google Scholar 

  42. Yang HC, Waldman RZ, Wu MB et al (2018) Dopamine: just the right medicine for membranes. Adv Funct Mater 8(8):1705327

    Article  CAS  Google Scholar 

  43. Lynge ME, Teo BM, Laursen MB et al (2013) Cargo delivery to adhering myoblast cells from liposome-containing poly(dopamine) composite coatings. Biomater Sci 1(11):1181–1192

    Article  CAS  Google Scholar 

  44. Ding T, Xing Y, Wang Z et al (2019) Structural complementarity from DNA for directing two-dimensional polydopamine nanomaterials with biomedical applications. Nanoscale Horiz 4(3):652–657

    Article  CAS  Google Scholar 

  45. Wang Y, Wu Y, Li K et al (2019b) Ultralong circulating lollipop-like nanoparticles assembled with gossypol, doxorubicin, and polydopamine via π–π stacking for synergistic tumor therapy. Adv Funct Mater 29(1):1805582

    Article  CAS  Google Scholar 

  46. Ponzio F, Bour J, Ball V (2015) Composite films of polydopamine-alcian blue for colored coating with new physical properties. J Colloid Interf Sci 459:29–35

    Article  CAS  Google Scholar 

  47. Wang H, Lin Q, Yin L et al (2019a) Biomimetic design of hollow flower-like g-C3N4@ PDA organic framework nanospheres for realizing an efficient photoreactivity. Small 15(16):1900011

    Article  CAS  Google Scholar 

  48. Dong Z, Feng L, Hao Y et al (2018) Synthesis of hollow biomineralized CaCO3-polydopamine nanoparticles for multimodal imaging-guided cancer photodynamic therapy with reduced skin photosensitivity. J Am Chem Soc 140(6):2165–2178

    Article  CAS  Google Scholar 

  49. Chien CY, Liu TY, Kuo WH et al (2013) Dopamine-assisted immobilization of hydroxyapatite nanoparticles and RGD peptides to improve the osteoconductivity of titanium. J Biomed Mater Res A 101(3):740–747

    Article  CAS  Google Scholar 

  50. Jiao L, Xu W, Yan H et al (2019) A dopamine-induced au hydrogel nanozyme for enhanced biomimetic catalysis. Chem Commun 55(66):9865–9868

    Article  CAS  Google Scholar 

  51. Zhang Y, Thingholm B, Goldie KN et al (2012d) Assembly of poly(dopamine) films mixed with a nonionic polymer. Langmuir 28(51):17585–17592

    Article  CAS  Google Scholar 

  52. Liu Y, Chang C-P, Sun T (2014a) Dopamine-assisted deposition of dextran for nonfouling applications. Langmuir 30(11):3118–3126

    Article  CAS  Google Scholar 

  53. Huang R, Liu X, Ye H et al (2015) Conjugation of hyaluronic acid onto surfaces via the interfacial polymerization of dopamine to prevent protein adsorption. Langmuir 31(44):12061–12070

    Article  CAS  Google Scholar 

  54. Zhang Y, Teo BM, Goldie KN et al (2014b) Poly(N-isopropylacrylamide)/poly (dopamine) capsules. Langmuir 30(19):5592–5598

    Article  CAS  Google Scholar 

  55. Chassepot A, Ball V (2014) Human serum albumin and other proteins as templating agents for the synthesis of nanosized dopamine-eumelanin. J Colloid Interf Sci 414:97–102

    Article  CAS  Google Scholar 

  56. Yu X, Fan H, Wang L et al (2014) Formation of polydopamine nanofibers with the aid of folic acid. Angew Chem Int Ed 53(46):12600–12604

    CAS  Google Scholar 

  57. Kohri M, Nannichi Y, Kohma H et al (2014) Size control of polydopamine nodules formed on polystyrene particles during dopamine polymerization with carboxylic acid-containing compounds for the fabrication of raspberry-like particles. Colloids Surf A Physicochem Eng Asp 449:114–120

    Article  CAS  Google Scholar 

  58. Li H, Jia Y, Wang A et al (2014) Self-assembly of hierarchical nanostructures from dopamine and polyoxometalate for oral drug delivery. Chem Eur J 20(2):499–504

    Article  CAS  Google Scholar 

  59. Zhang H, Guo L-Y, Jiao J et al (2017a) Ionic self-assembly of polyoxometalate-dopamine hybrid nanoflowers with excellent catalytic activity for dyes. ACS Sustain Chem Eng 5(2):1358–1367

    Article  CAS  Google Scholar 

  60. Li H, Yan Y, Gu X et al (2018) Organic-inorganic hybrid based on co-assembly of polyoxometalate and dopamine for synthesis of nanostructured ag. Colloids Surf A Physicochem Eng Asp 538:513–518

    Article  CAS  Google Scholar 

  61. Tang L, Mo S, Liu SG et al (2018) Preparation of bright fluorescent polydopamine-glutathione nanoparticles and their application for sensing of hydrogen peroxide and glucose. Sensor Actuat B Chem 259:467–474

    Article  CAS  Google Scholar 

  62. Hong S, Schaber CF, Dening K et al (2014) Air/water interfacial formation of freestanding, stimuli-responsive, self-healing catecholamine Janus-faced microfilms. Adv Mater 26(45):7581–7587

    Article  CAS  Google Scholar 

  63. Liu M, Ji J, Zhang X et al (2015b) Self-polymerization of dopamine and polyethyleneimine: novel fluorescent organic nanoprobes for biological imaging applications. J Mater Chem B 3(17):3476–3482

    Article  CAS  Google Scholar 

  64. Zhao C, Zuo F, Liao Z et al (2015) Mussel-inspired one-pot synthesis of a fluorescent and water-soluble polydopamine-polyethyleneimine copolymer. Macromol Rapid Commun 36(10):909–915

    Article  CAS  Google Scholar 

  65. Li H, Zhao Y, Jia Y et al (2019) Covalently assembled dopamine nanoparticle as an intrinsic photosensitizer and pH-responsive nanocarrier for potential application of anticancer therapy. Chem Commun 55:15057–15060

    Article  CAS  Google Scholar 

  66. Li H, Zhao Y, Jia Y et al (2020) pH-responsive dopamine-based nanoparticles assembled via Schiff base bonds for synergistic anticancer therapy. Chem Commun 56:13347–13350

    Article  CAS  Google Scholar 

  67. Chen Y, Ai K, Liu J et al (2016) Polydopamine-based coordination nanocomplex for T1/T2 dual mode magnetic resonance imaging-guided chemo-photothermal synergistic therapy. Biomaterials 77:198–206

    Article  CAS  Google Scholar 

  68. Sun C, Zhang L, Zhang R et al (2015) Facilely synthesized polydopamine encapsulated surface-enhanced raman scattering (SRES) probes for multiplex tumor associated cell surface antigen detection using SRES imaging. RSC Adv 5(88):72369–72372

    Article  CAS  Google Scholar 

  69. Ju K-Y, Lee JW, Im GH et al (2013) Bio-inspired, melanin-like nanoparticles as a highly efficient contrast agent for T1-weighted magnetic resonance imaging. Biomacromolecules 14(10):3491–3497

    Article  CAS  Google Scholar 

  70. Xie C, Wang X, He H et al (2020) Mussel-inspired hydrogels for self-adhesive bioelectronics. Adv Funct Mater 30(25):1909954

    Article  CAS  Google Scholar 

  71. Han L, Yan L, Wang K et al (2017) Tough, self-healable and tissue-adhesive hydrogel with tunable multifunctionality. NPG Asia Mater 9(4):e372

    Article  CAS  Google Scholar 

  72. Zhang X, Huang Q, Deng F et al (2017b) Mussel-inspired fabrication of functional materials and their environmental applications: progress and prospects. Appl Mater Today 7:222–238

    Article  Google Scholar 

  73. Zhang X, Jia X, Zhang G et al (2014a) Efficient removal and highly selective adsorption of Hg2+ by polydopamine nanospheres with total recycle capacity. Appl Surf Sci 314:166–173

    Article  CAS  Google Scholar 

  74. Qian Y, Yuan Y, Wang H et al (2018) Highly efficient uranium adsorption by salicylaldoxime/polydopamine graphene oxide nanocomposites. J Mater Chem A 6(48):24676–24685

    Article  CAS  Google Scholar 

  75. Zhu K, Chen C, Xu M et al (2018) In situ carbothermal reduction synthesis of Fe nanocrystals embedded into N-doped carbon nanospheres for highly efficient U(VI) adsorption and reduction. Chem Eng J 331:395–405

    Article  CAS  Google Scholar 

  76. Fang X, Li J, Li X et al (2017) Internal pore decoration with polydopamine nanoparticle on polymeric ultrafiltration membrane for enhanced heavy metal removal. Chem Eng J 314:38–49

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the National Natural Science Foundation of China (Nos. 21703169 and 21972084), the Scientific Research Plan of Shaanxi Province of China (No. 2021KJXX-39), and the Young Talent Fund of University Association for Science and Technology in Shaanxi Province of China (No. 20190605).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junbai Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, H., Li, J. (2022). Dopamine-Based Materials: Recent Advances in Synthesis Methods and Applications. In: Govindaraju, T., Ariga, K. (eds) Molecular Architectonics and Nanoarchitectonics. Nanostructure Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-4189-3_6

Download citation

Publish with us

Policies and ethics