Skip to main content

Advertisement

Log in

Recent trends in analysis of nanoparticles in biological matrices

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The need to assess the human and environmental risks of nanoparticles (NPs) has prompted an adaptation of existing techniques and the development of new ones. Nanoparticle analysis poses a great challenge as the analytical information has to consider both physical (e.g. size and shape) and chemical (e.g. elemental composition) state of the analyte. Furthermore, one has to contemplate the transformation of NPs during the sample preparation and provide sufficient information about the new species derived from such alteration. Traditional techniques commonly used for NP analysis such as microscopy and light scattering are still frequently used for NPs in simple matrices; however, they have limitations in the analysis of complex environmental and biological samples. On the other hand, recent improvements in data acquisition frequencies and reduction of settling time of ICP-MS brought inorganic mass spectrometry into the forefront of NPs analysis. However, with the increasing demand of analytical information related to NPs, emerging techniques such as enhanced darkfield hyperspectral imaging, nano-SIMS and mass cytometry are in their way to fill the gaps. This trend review presents and discusses the state-of-the-art analytical techniques and sample preparation methods for NP analysis in biological matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hochella MF. Nanoscience and technology: the next revolution in the Earth sciences. Earth Planet Sci Lett. 2002;203(2):593–605. https://doi.org/10.1016/s0012-821x(02)00818-x.

    Article  CAS  Google Scholar 

  2. Wang H, Pumera M. Fabrication of micro/nanoscale motors. Chem Rev. 2015;115(16):8704–35.

    Article  CAS  Google Scholar 

  3. Karshalev E, Esteban-Fernández de Ávila B, Wang J. Micromotors for “Chemistry-on-the-Fly”. J Am Chem Soc. 2018;140(11):3810–20.

    Article  CAS  Google Scholar 

  4. Banfield JF, Zhang H. Nanoparticles in the environment. Rev Mineral Geochem. 2001;44(1):1–58. https://doi.org/10.2138/rmg.2001.44.01.

    Article  CAS  Google Scholar 

  5. Naasz S, Altenburger R, Kühnel D. Environmental mixtures of nanomaterials and chemicals: the Trojan-horse phenomenon and its relevance for ecotoxicity. Sci Total Environ. 2018;635:1170–81. https://doi.org/10.1016/j.scitotenv.2018.04.180.

    Article  CAS  PubMed  Google Scholar 

  6. Communication from the Commission to the European Parliament, the Council and the European Economic and Social Committee on the Second Regulatory Review on Nanomaterials. 2012. https://ec.europa.eu/health//sites/health/files/nanotechnology/docs/swd_2012_288_en.pdf

  7. Re-evaluation of titanium dioxide (E 171) as a food additive. EFSA J. 2016;14(9):e04545. https://doi.org/10.2903/j.efsa.2016.4545.

  8. Gordon SC, Butala JH, Carter JM, Elder A, Gordon T, Gray G, et al. Workshop report: strategies for setting occupational exposure limits for engineered nanomaterials. Regul Toxicol Pharmacol. 2014;68(3):305–11.

    Article  Google Scholar 

  9. Amenta V, Aschberger K, Arena M, Bouwmeester H, Moniz FB, Brandhoff P, et al. Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. Regul Toxicol Pharmacol. 2015;73(1):463–76.

    Article  Google Scholar 

  10. Lapresta-Fernández A, Salinas-Castillo A, Anderson dela Llana S, Costa-Fernández JM, Domínguez-Meister S, Cecchini R, et al. A general perspective of the characterization and quantification of nanoparticles: imaging, spectroscopic, and separation techniques. Crit Rev Solid State. 2014;39(6):423–58. https://doi.org/10.1080/10408436.2014.899890.

    Article  CAS  Google Scholar 

  11. Sadik OA, Du N, Kariuki V, Okello V, Bushlyar V. Current and emerging technologies for the characterization of nanomaterials. ACS Sustain Chem Eng. 2014;2(7):1707–16. https://doi.org/10.1021/sc500175v.

    Article  CAS  Google Scholar 

  12. Makama S, Peters R, Undas A, van den Brink NW. A novel method for the quantification, characterisation and speciation of silver nanoparticles in earthworms exposed in soil. Environ Chem. 2015;12(6):643. https://doi.org/10.1071/en15006.

    Article  CAS  Google Scholar 

  13. Jiménez-Lamana J, Abad-Álvaro I, Bierla K, Laborda F, Szpunar J, Lobinski R. Detection and characterization of biogenic selenium nanoparticles in selenium-rich yeast by single particle ICPMS. J Anal At Spectrom. 2018;33(3):452–60. https://doi.org/10.1039/c7ja00378a.

    Article  CAS  Google Scholar 

  14. Mortimer M, Gogos A, Bartolomé N, Kahru A, Bucheli TD, Slaveykova VI. Potential of hyperspectral imaging microscopy for semi-quantitative analysis of nanoparticle uptake by protozoa. Environ Sci Technol. 2014;48(15):8760–7. https://doi.org/10.1021/es500898j.

    Article  CAS  PubMed  Google Scholar 

  15. Meyer JN, Lord CA, Yang XY, Turner EA, Badireddy AR, Marinakos SM, et al. Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aquat Toxicol. 2010;100(2):140–50. https://doi.org/10.1016/j.aquatox.2010.07.016.

    Article  CAS  PubMed  Google Scholar 

  16. Théoret T, Wilkinson KJ. Evaluation of enhanced darkfield microscopy and hyperspectral analysis to analyse the fate of silver nanoparticles in wastewaters. Anal Methods. 2017;9(26):3920–8. https://doi.org/10.1039/c7ay00615b.

    Article  CAS  Google Scholar 

  17. Vidmar J, Loeschner K, Correia M, Larsen EH, Manser P, Wichser A, et al. Translocation of silver nanoparticles in the ex vivo human placenta perfusion model characterized by single particle ICP-MS. Nanoscale. 2018;10(25):11980–91. https://doi.org/10.1039/c8nr02096e.

    Article  CAS  PubMed  Google Scholar 

  18. Pena MDPS, Gottipati A, Tahiliani S, Neu-Baker NM, Frame MD, Friedman AJ, et al. Hyperspectral imaging of nanoparticles in biological samples: simultaneous visualization and elemental identification. Microsc Res Tech. 2016;79(5):349–58.

    Article  CAS  Google Scholar 

  19. Brar SK, Verma M. Measurement of nanoparticles by light-scattering techniques. Trends Anal Chem. 2011;30(1):4–17. https://doi.org/10.1016/j.trac.2010.08.008.

    Article  CAS  Google Scholar 

  20. Tiede K, Boxall ABA, Tear SP, Lewis J, David H, Hassellöv M. Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam Part A. 2008;25(7):795–821. https://doi.org/10.1080/02652030802007553.

    Article  CAS  Google Scholar 

  21. Correia M, Loeschner K. Detection of nanoplastics in food by asymmetric flow field-flow fractionation coupled to multi-angle light scattering: possibilities, challenges and analytical limitations. Anal Bioanal Chem. 2018;410(22):5603–15. https://doi.org/10.1007/s00216-018-0919-8.

    Article  CAS  PubMed  Google Scholar 

  22. Deering CE, Tadjiki S, Assemi S, Miller JD, Yost GS, Veranth JM. A novel method to detect unlabeled inorganic nanoparticles and submicron particles in tissue by sedimentation field-flow fractionation. Part Fibre Toxicol. 2008;5(1):18. https://doi.org/10.1186/1743-8977-5-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Degueldre C, Favarger PY. Colloid analysis by single particle inductively coupled plasma-mass spectroscopy: a feasibility study. Colloids Surf A Physicochem Eng Asp. 2003;217(1–3):137–42. https://doi.org/10.1016/s0927-7757(02)00568-x.

    Article  CAS  Google Scholar 

  24. Olesik JW, Gray PJ. Considerations for measurement of individual nanoparticles or microparticles by ICP-MS: determination of the number of particles and the analyte mass in each particle. J Anal At Spectrom. 2012;27(7):1143. https://doi.org/10.1039/c2ja30073g.

    Article  CAS  Google Scholar 

  25. Naasz S, Weigel S, Borovinskaya O, Serva A, Cascio C, Undas AK, et al. Multi-element analysis of single nanoparticles by ICP-MS using quadrupole and time-of-flight technologies. J Anal At Spectrom. 2018;33(5):835–45. https://doi.org/10.1039/c7ja00399d.

    Article  CAS  Google Scholar 

  26. Shigeta K, Koellensperger G, Rampler E, Traub H, Rottmann L, Panne U, et al. Sample introduction of single selenized yeast cells (Saccharomyces cerevisiae) by micro droplet generation into an ICP-sector field mass spectrometer for label-free detection of trace elements. J Anal At Spectrom. 2013;28(5):637. https://doi.org/10.1039/c3ja30370e.

    Article  CAS  Google Scholar 

  27. Walder AJ, Freedman PA. Communication. Isotopic ratio measurement using a double focusing magnetic sector mass analyser with an inductively coupled plasma as an ion source. J Anal At Spectrom. 1992;7(3):571. https://doi.org/10.1039/ja9920700571.

    Article  CAS  Google Scholar 

  28. Yang L. Accurate and precise determination of isotopic ratios by MC-ICP-MS: a review. Mass Spectrom Rev. 2009;28(6):990–1011. https://doi.org/10.1002/mas.20251.

    Article  CAS  PubMed  Google Scholar 

  29. Tanner M, Günther D. Short transient signals, a challenge for inductively coupled plasma mass spectrometry, a review. Anal Chim Acta. 2009;633(1):19–28. https://doi.org/10.1016/j.aca.2008.11.041.

    Article  CAS  PubMed  Google Scholar 

  30. Borovinskaya O, Hattendorf B, Tanner M, Gschwind S, Günther D. A prototype of a new inductively coupled plasma time-of-flight mass spectrometer providing temporally resolved, multi-element detection of short signals generated by single particles and droplets. J Anal At Spectrom. 2013;28(2):226–33. https://doi.org/10.1039/c2ja30227f.

    Article  CAS  Google Scholar 

  31. Guilhaus M, Selby D, Mlynski V. Orthogonal acceleration time-of-flight mass spectrometry. Mass Spectrom Rev. 2000;19(2):65–107. https://doi.org/10.1002/(sici)1098-2787(2000)19:2<65::aid-mas1>3.0.co;2-e.

    Article  CAS  PubMed  Google Scholar 

  32. Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach R, Lou X, et al. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem. 2009;81(16):6813–22. https://doi.org/10.1021/ac901049w.

    Article  CAS  PubMed  Google Scholar 

  33. Schimpf ME, Caldwell K, Giddings JC. Field-flow fractionation handbook. 2000; John Wiley & Sons

  34. Shard AG, Sparnacci K, Sikora A, Wright L, Bartczak D, Goenaga-Infante H, et al. Measuring the relative concentration of particle populations using differential centrifugal sedimentation. Anal Methods. 2018;10(22):2647–57. https://doi.org/10.1039/c8ay00491a.

    Article  CAS  Google Scholar 

  35. Hawkins A, Bednar AJ, Cizdziel J, Bu K, Steevens JA, Willett KL. Identification of silver nanoparticles in Pimephales promelas gastrointestinal tract and gill tissues using flow field flow fractionation ICP-MS. RSC Adv. 2014;4(78):41277–80.

    Article  CAS  Google Scholar 

  36. Loeschner K, Navratilova J, Grombe R, Linsinger TPJ, Købler C, Mølhave K, et al. In-house validation of a method for determination of silver nanoparticles in chicken meat based on asymmetric flow field-flow fractionation and inductively coupled plasma mass spectrometric detection. Food Chem. 2015;181:78–84. https://doi.org/10.1016/j.foodchem.2015.02.033.

    Article  CAS  PubMed  Google Scholar 

  37. Loeschner K, Navratilova J, Købler C, Mølhave K, Wagner S, von der Kammer F, et al. Detection and characterization of silver nanoparticles in chicken meat by asymmetric flow field flow fractionation with detection by conventional or single particle ICP-MS. Anal Bioanal Chem. 2013;405(25):8185–95. https://doi.org/10.1007/s00216-013-7228-z.

    Article  CAS  PubMed  Google Scholar 

  38. Heroult J, Nischwitz V, Bartczak D, Goenaga-Infante H. The potential of asymmetric flow field-flow fractionation hyphenated to multiple detectors for the quantification and size estimation of silica nanoparticles in a food matrix. Anal Bioanal Chem. 2014;406(16):3919–27. https://doi.org/10.1007/s00216-014-7831-7.

    Article  CAS  PubMed  Google Scholar 

  39. Bartczak D, Vincent P, Goenaga-Infante H. Determination of size- and number-based concentration of silica nanoparticles in a complex biological matrix by online techniques. Anal Chem. 2015;87(11):5482–5. https://doi.org/10.1021/acs.analchem.5b01052.

    Article  CAS  PubMed  Google Scholar 

  40. Pitkänen L, Striegel AM. Size-exclusion chromatography of metal nanoparticles and quantum dots. Trends Anal Chem. 2016;80:311–20. https://doi.org/10.1016/j.trac.2015.06.013.

    Article  CAS  Google Scholar 

  41. Brewer AK, Striegel AM. Particle size characterization by quadruple-detector hydrodynamic chromatography. Anal Bioanal Chem. 2008;393(1):295–302. https://doi.org/10.1007/s00216-008-2319-y.

    Article  CAS  PubMed  Google Scholar 

  42. Proulx K, Hadioui M, Wilkinson KJ. Separation, detection and characterization of nanomaterials in municipal wastewaters using hydrodynamic chromatography coupled to ICPMS and single particle ICPMS. Anal Bioanal Chem. 2016;408(19):5147–55. https://doi.org/10.1007/s00216-016-9451-x.

    Article  CAS  PubMed  Google Scholar 

  43. Lombi E, Scheckel KG, Kempson IM. In situ analysis of metal(loid)s in plants: state of the art and artefacts. Environ Exp Bot. 2011;72(1):3–17. https://doi.org/10.1016/j.envexpbot.2010.04.005.

    Article  CAS  Google Scholar 

  44. Veith L, Dietrich D, Vennemann A, Breitenstein D, Engelhard C, Karst U, et al. Combination of micro X-ray fluorescence spectroscopy and time-of-flight secondary ion mass spectrometry imaging for the marker-free detection of CeO 2 nanoparticles in tissue sections. J Anal At Spectrom. 2018;33(3):491–501.

    Article  CAS  Google Scholar 

  45. Servin AD, Castillo-Michel H, Hernandez-Viezcas JA, De Nolf W, De La Torre-Roche R, Pagano L, et al. Bioaccumulation of CeO2 nanoparticles by earthworms in biochar-amended soil: a synchrotron microspectroscopy study. J Agric Food Chem. 2018;66(26):6609-6618. https://doi.org/10.1021/acs.jafc.7b04612.

  46. Da Silva GH, Clemente Z, Khan LU, Coa F, Neto LL, Carvalho HW, et al. Toxicity assessment of TiO2-MWCNT nanohybrid material with enhanced photocatalytic activity on Danio rerio (Zebrafish) embryos. Ecotoxicol Environ Saf. 2018;165:136–43.

    Article  Google Scholar 

  47. Mahmoud NN, Harfouche M, Alkilany AM, Al-Bakri AG, El-Qirem RA, Shraim SA, et al. Synchrotron-based X-ray fluorescence study of gold nanorods and skin elements distribution into excised human skin layers. Colloids Surf B: Biointerfaces. 2018;165:118–26.

    Article  CAS  Google Scholar 

  48. Andrews JC, Meirer F, Liu Y, Mester Z, Pianetta P. Transmission X-ray microscopy for full-field nano imaging of biomaterials. Microsc Res Tech. 2011;74(7):671–81. https://doi.org/10.1002/jemt.20907.

    Article  CAS  PubMed  Google Scholar 

  49. Liu Y, Andrews J, Meirer F, Mehta A, Gil SC, Sciau P et al. editors. Applications of Hard X-ray Full-Field Transmission X-ray Microscopy at SSRL. In: AIP Conf Proc. AIP; 2011.

  50. McRae R, Bagchi P, Sumalekshmy S, Fahrni CJ. In situ imaging of metals in cells and tissues. Chem Rev. 2009;109(10):4780–827. https://doi.org/10.1021/cr900223a.

    Article  CAS  PubMed  Google Scholar 

  51. ISO. International Organization for Standardization (ISO), ISO Guide 34. Geneva: General requirements for the competence of reference material producers; 2009.

    Google Scholar 

  52. Grombe R, Charoud-Got J, Emteborg H, Linsinger TPJ, Seghers J, Wagner S, et al. Production of reference materials for the detection and size determination of silica nanoparticles in tomato soup. Anal Bioanal Chem. 2014. https://doi.org/10.1007/s00216-013-7554-1.

  53. Arslan Z, Ates M, McDuffy W, Agachan MS, Farah IO, Yu WW, et al. Probing metabolic stability of CdSe nanoparticles: alkaline extraction of free cadmium from liver and kidney samples of rats exposed to CdSe nanoparticles. J Hazard Mater. 2011. https://doi.org/10.1016/j.jhazmat.2011.05.003.

  54. Loeschner K, Brabrand MSJ, Sloth JJ, Larsen EH. Use of alkaline or enzymatic sample pretreatment prior to characterization of gold nanoparticles in animal tissue by single-particle ICPMS. Anal Bioanal Chem. 2013;406(16):3845–51. https://doi.org/10.1007/s00216-013-7431-y.

    Article  CAS  PubMed  Google Scholar 

  55. Jiménez-Lamana J, Laborda F, Bolea E, Abad-Álvaro I, Castillo JR, Bianga J, et al. An insight into silver nanoparticles bioavailability in rats. Metallomics. 2014;6(12):2242–9. https://doi.org/10.1039/c4mt00200h.

    Article  PubMed  Google Scholar 

  56. Bolea E, Jiménez-Lamana J, Laborda F, Abad-Álvaro I, Bladé C, Arola L, et al. Detection and characterization of silver nanoparticles and dissolved species of silver in culture medium and cells by AsFlFFF-UV-Vis-ICPMS: application to nanotoxicity tests. Analyst. 2014;139(5):914–22. https://doi.org/10.1039/c3an01443f.

    Article  CAS  PubMed  Google Scholar 

  57. Klingberg H, Oddershede LB, Loeschner K, Larsen EH, Loft S, Møller P. Uptake of gold nanoparticles in primary human endothelial cells. Toxicol Res. 2015;4(3):655–66. https://doi.org/10.1039/c4tx00061g.

    Article  CAS  Google Scholar 

  58. Campbell P, Ma S, Schmalzried T, Amstutz HC. Tissue digestion for wear debris particle isolation. J Biomed Mater Res. 1994;28(4):523–6. https://doi.org/10.1002/jbm.820280415.

    Article  CAS  PubMed  Google Scholar 

  59. Baxter RM, Steinbeck MJ, Tipper JL, Parvizi J, Marcolongo M, Kurtz SM. Comparison of periprosthetic tissue digestion methods for ultra-high molecular weight polyethylene wear debris extraction. J Biomed Mater Res B Appl Biomater. 2009;91B(1):409–18. https://doi.org/10.1002/jbm.b.31416.

    Article  CAS  Google Scholar 

  60. Vidmar J, Buerki-Thurnherr T, Loeschner K. Comparison of the suitability of alkaline or enzymatic sample pre-treatment for characterization of silver nanoparticles in human tissue by single particle ICP-MS. J Anal At Spectrom. 2018;33(5):752–61. https://doi.org/10.1039/c7ja00402h.

    Article  CAS  Google Scholar 

  61. Gray EP, Coleman JG, Bednar AJ, Kennedy AJ, Ranville JF, Higgins CP. Extraction and analysis of silver and gold nanoparticles from biological tissues using single particle inductively coupled plasma mass spectrometry. Environ Sci Technol. 2013;47(24):14315–23. https://doi.org/10.1021/es403558c.

    Article  CAS  PubMed  Google Scholar 

  62. Gajdosechova Z, Lawan MM, Urgast DS, Raab A, Scheckel KG, Lombi E, et al. In vivo formation of natural HgSe nanoparticles in the liver and brain of pilot whales. Sci Rep. 2016;6:34361. https://doi.org/10.1038/srep34361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. van der Zande M, Vandebriel RJ, Van Doren E, Kramer E, Herrera Rivera Z, Serrano-Rojero CS, et al. Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano. 2012;6(8):7427–42. https://doi.org/10.1021/nn302649p.

    Article  CAS  PubMed  Google Scholar 

  64. Peters R, Herrera-Rivera Z, Undas A, van der Lee M, Marvin H, Bouwmeester H, et al. Single particle ICP-MS combined with a data evaluation tool as a routine technique for the analysis of nanoparticles in complex matrices. J Anal At Spectrom. 2015;30(6):1274–85. https://doi.org/10.1039/c4ja00357h.

    Article  CAS  Google Scholar 

  65. Peters RJB, Rivera ZH, van Bemmel G, Marvin HJP, Weigel S, Bouwmeester H. Development and validation of single particle ICP-MS for sizing and quantitative determination of nano-silver in chicken meat. Anal Bioanal Chem. 2014. https://doi.org/10.1007/s00216-013-7571-0.

  66. Schmidt B, Loeschner K, Hadrup N, Mortensen A, Sloth JJ, Bender Koch C, et al. Quantitative characterization of gold nanoparticles by field-flow fractionation coupled online with light scattering detection and inductively coupled plasma mass spectrometry. Anal Chem. 2011;83(7):2461–8. https://doi.org/10.1021/ac102545e.

    Article  CAS  PubMed  Google Scholar 

  67. Hadioui M, Peyrot C, Wilkinson KJ. Improvements to single particle ICPMS by the online coupling of ion exchange resins. Anal Chem. 2014;86(10):4668–74. https://doi.org/10.1021/ac5004932.

    Article  CAS  PubMed  Google Scholar 

  68. Heringa MB, Peters RJB, Bleys RLAW, van der Lee MK, Tromp PC, van Kesteren PCE, et al. Detection of titanium particles in human liver and spleen and possible health implications. Part Fibre Toxicol. 2018;15(1). https://doi.org/10.1186/s12989-018-0251-7.

  69. Peters RJB, van Bemmel G, Herrera-Rivera Z, Helsper HPFG, Marvin HJP, Weigel S, et al. Characterization of titanium dioxide nanoparticles in food products: analytical methods to define nanoparticles. J Agric Food Chem. 2014;62(27):6285–93. https://doi.org/10.1021/jf5011885.

    Article  CAS  PubMed  Google Scholar 

  70. Modrzynska J, Berthing T, Ravn-Haren G, Kling K, Mortensen A, Rasmussen RR, et al. In vivo-induced size transformation of cerium oxide nanoparticles in both lung and liver does not affect long-term hepatic accumulation following pulmonary exposure. PLoS One. 2018;13(8):e0202477. https://doi.org/10.1371/journal.pone.0202477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Graham UM, Tseng MT, Jasinski JB, Yokel RA, Unrine JM, Davis BH, et al. In vivo processing of ceria nanoparticles inside liver: impact on free-radical scavenging activity and oxidative stress. Chem Aust. 2014;79(8):1083–8. https://doi.org/10.1002/cplu.201402080.

    Article  CAS  Google Scholar 

  72. Yamashita K, Yoshioka Y, Higashisaka K, Mimura K, Morishita Y, Nozaki M, et al. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat Nanotechnol. 2011;6(5):321–8. https://doi.org/10.1038/nnano.2011.41.

    Article  CAS  PubMed  Google Scholar 

  73. Pietroiusti A, Massimiani M, Fenoglio I, Colonna M, Valentini F, Palleschi G, et al. Low doses of pristine and oxidized single-wall carbon nanotubes affect mammalian embryonic development. ACS Nano. 2011;5(6):4624–33. https://doi.org/10.1021/nn200372g.

    Article  CAS  PubMed  Google Scholar 

  74. Campagnolo L, Massimiani M, Palmieri G, Bernardini R, Sacchetti C, Bergamaschi A, et al. Biodistribution and toxicity of pegylated single wall carbon nanotubes in pregnant mice. Part Fibre Toxicol. 2013;10(1):21. https://doi.org/10.1186/1743-8977-10-21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hougaard KS, Campagnolo L, Chavatte-Palmer P, Tarrade A, Rousseau-Ralliard D, Valentino S, et al. A perspective on the developmental toxicity of inhaled nanoparticles. Reprod Toxicol. 2015;56:118–40. https://doi.org/10.1016/j.reprotox.2015.05.015.

    Article  CAS  PubMed  Google Scholar 

  76. Drescher D, Giesen C, Traub H, Panne U, Kneipp J, Jakubowski N. Quantitative imaging of gold and silver nanoparticles in single eukaryotic cells by laser ablation ICP-MS. Anal Chem. 2012;84(22):9684–8. https://doi.org/10.1021/ac302639c.

    Article  CAS  PubMed  Google Scholar 

  77. Koeman JH, van de Ven WSM, de Goeij JJM, Tjioe PS, van Haaften JL. Mercury and selenium in marine mammals and birds. Sci Total Environ. 1975;3(3):279–87. https://doi.org/10.1016/0048-9697(75)90052-2.

    Article  CAS  PubMed  Google Scholar 

  78. Tuoriniemi J, Cornelis G, Hassellöv M. Size discrimination and detection capabilities of single-particle ICPMS for environmental analysis of silver nanoparticles. Anal Chem. 2012;84(9):3965–72. https://doi.org/10.1021/ac203005r.

    Article  CAS  PubMed  Google Scholar 

  79. Tuoriniemi J, Cornelis G, Hassellöv M. Improving the accuracy of single particle ICPMS for measurement of size distributions and number concentrations of nanoparticles by determining analyte partitioning during nebulisation. J Anal At Spectrom. 2014;29(4):743–52. https://doi.org/10.1039/c3ja50367d.

    Article  CAS  Google Scholar 

  80. Gschwind S, Aja Montes ML, Günther D. Comparison of sp-ICP-MS and MDG-ICP-MS for the determination of particle number concentration. Anal Bioanal Chem. 2015;407(14):4035–44. https://doi.org/10.1007/s00216-015-8620-7.

    Article  CAS  PubMed  Google Scholar 

  81. Yin R, Feng X, Meng B. Stable mercury isotope variation in rice plants (Oryza sativa L.) from the Wanshan Mercury Mining District, SW China. Environ Sci Technol. 2013;47(5):2238–45. https://doi.org/10.1021/es304302a.

    Article  CAS  PubMed  Google Scholar 

  82. Nuñez J, Renslow R, Cliff JB, Anderton CR. NanoSIMS for biological applications: current practices and analyses. Biointerphases. 2018;13(3):03B301. https://doi.org/10.1116/1.4993628.

    Article  CAS  Google Scholar 

  83. Georgantzopoulou A, Serchi T, Cambier S, Leclercq CC, Renaut J, Shao J, et al. Effects of silver nanoparticles and ions on a co-culture model for the gastrointestinal epithelium. Part Fibre Toxicol. 2016;13(1). https://doi.org/10.1186/s12989-016-0117-9.

  84. Mehennaoui K, Georgantzopoulou A, Felten V, Andreï J, Garaud M, Cambier S, et al. Gammarus fossarum (Crustacea, Amphipoda) as a model organism to study the effects of silver nanoparticles. Sci Total Environ. 2016;566-567:1649–59. https://doi.org/10.1016/j.scitotenv.2016.06.068.

    Article  CAS  PubMed  Google Scholar 

  85. Henss A, Otto S-K, Schaepe K, Pauksch L, Lips KS, Rohnke M. High resolution imaging and 3D analysis of Ag nanoparticles in cells with ToF-SIMS and delayed extraction. Biointerphases. 2018;13(3):03B410. https://doi.org/10.1116/1.5015957.

    Article  CAS  PubMed  Google Scholar 

  86. Lopes VR, Loitto V, Audinot J-N, Bayat N, Gutleb AC, Cristobal S. Dose-dependent autophagic effect of titanium dioxide nanoparticles in human HaCaT cells at non-cytotoxic levels. J Nanobiotechnol. 2016;14(1). https://doi.org/10.1186/s12951-016-0174-0.

  87. Bettini S, Boutet-Robinet E, Cartier C, Coméra C, Gaultier E, Dupuy J, et al. Food-grade TiO2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon. Sci Rep. 2017;7(1). https://doi.org/10.1038/srep40373.

  88. Yang Y-SS, Atukorale PU, Moynihan KD, Bekdemir A, Rakhra K, Tang L, et al. High-throughput quantitation of inorganic nanoparticle biodistribution at the single-cell level using mass cytometry. Nat Commun. 2017;8:14069. https://doi.org/10.1038/ncomms14069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ivask A, Mitchell AJ, Hope CM, Barry SC, Lombi E, Voelcker NH. Single cell level quantification of nanoparticle–cell interactions using mass cytometry. Anal Chem. 2017;89(16):8228–32. https://doi.org/10.1021/acs.analchem.7b01006.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuzana Gajdosechova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry with guest editors Erin Baker, Kerstin Leopold, Francesco Ricci, and Wei Wang.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gajdosechova, Z., Mester, Z. Recent trends in analysis of nanoparticles in biological matrices. Anal Bioanal Chem 411, 4277–4292 (2019). https://doi.org/10.1007/s00216-019-01620-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01620-9

Keywords

Navigation