Skip to main content
Log in

Detection of nanoplastics in food by asymmetric flow field-flow fractionation coupled to multi-angle light scattering: possibilities, challenges and analytical limitations

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We tested the suitability of asymmetric flow field-flow fractionation (AF4) coupled to multi-angle light scattering (MALS) for detection of nanoplastics in fish. A homogenized fish sample was spiked with 100 nm polystyrene nanoparticles (PSNPs) (1.3 mg/g fish). Two sample preparation strategies were tested: acid digestion and enzymatic digestion with proteinase K. Both procedures were found suitable for degradation of the organic matrix. However, acid digestion resulted in large PSNPs aggregates/agglomerates (> 1 μm). The presence of large particulates was not observed after enzymatic digestion, and consequently it was chosen as a sample preparation method. The results demonstrated that it was possible to use AF4 for separating the PSNPs from the digested fish and to determine their size by MALS. The PSNPs could be easily detected by following their light scattering (LS) signal with a limit of detection of 52 μg/g fish. The AF4-MALS method could also be exploited for another type of nanoplastics in solution, namely polyethylene (PE). However, it was not possible to detect the PE particles in fish, due to the presence of an elevated LS background. Our results demonstrate that an analytical method developed for a certain type of nanoplastics may not be directly applicable to other types of nanoplastics and may require further adjustment. This work describes for the first time the detection of nanoplastics in a food matrix by AF4-MALS. Despite the current limitations, this is a promising methodology for detecting nanoplastics in food and in experimental studies (e.g., toxicity tests, uptake studies).

Basic concept for the detection of nanoplastics in fish by asymmetric flow field-flow fractionation coupled to multi-angle light scattering

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hollman PCH, Bouwmeester H, Peters RJB (2013) Microplastics in aquatic food chain: sources, measurement, occurrence and potential health risks. Wageningen, RIKILT Wageningen UR (University and Research centre), RIKILT report.

  2. EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain). Statement on the presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA J. 2016;14:4501–31. https://doi.org/10.2903/j.efsa.2016.4501.

    Article  CAS  Google Scholar 

  3. Bouwmeester H, Hollman PCH, Peters RJB. Potential health impact of environmentally released micro- and nanoplastics in the human food production chain: experiences from nanotoxicology. Environ Sci Technol. 2015;49:8932–47. https://doi.org/10.1021/acs.est.5b01090.

    Article  CAS  PubMed  Google Scholar 

  4. Koelmans AA, Besseling E, Shim WJ. Nanoplastics in the aquatic environment. Critical review. In: Bergmann M, Gutow L, Klages M, editors. Mar. Anthropog. Litter. Cham: Springer International Publishing; 2015. p. 325–40.

    Chapter  Google Scholar 

  5. Sundt P, Schulze P-E, Syversen F (2015) Sources of microplastic-pollution to the marine environment (Mepex report to the Norwegian Environment Agency/Miljødirektoratet, report number M-321). 86.

  6. Rist S, Hartmann NB. Aquatic ecotoxicity of microplastics and nanoplastics: lessons learned from engineered nanomaterials. In: Wagner M, Lambert S, editors. Freshw. Microplastics. Handb. Environ. Chem. Vol 58. Cham: Springer; 2018. p. 25–49.

    Chapter  Google Scholar 

  7. Gigault J, Pedrono B, Maxit B, Ter Halle A. Marine plastic litter: the unanalyzed nano-fraction. Environ Sci Nano. 2016;3:346–50. https://doi.org/10.1039/C6EN00008H.

    Article  CAS  Google Scholar 

  8. Mattsson K, Johnson EV, Malmendal A, Linse S, Hansson L-A, Cedervall T. Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Sci Rep. 2017;7:11452. https://doi.org/10.1038/s41598-017-10813-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Iñiguez ME, Conesa JA, Fullana A. Microplastics in Spanish table salt. Sci Rep. 2017;7:8620. https://doi.org/10.1038/s41598-017-09128-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang D, Shi H, Li L, Li J, Jabeen K, Kolandhasamy P. Microplastic pollution in table salts from China. Environ Sci Technol. 2015;49:13622–7. https://doi.org/10.1021/acs.est.5b03163.

    Article  CAS  PubMed  Google Scholar 

  11. Liebezeit G, Liebezeit E. Synthetic particles as contaminants in German beers. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2014;31:1574–8. https://doi.org/10.1080/19440049.2014.945099.

    Article  CAS  PubMed  Google Scholar 

  12. Liebezeit G, Liebezeit E. Origin of synthetic particles in honeys. Polish J Food Nutr Sci. 2015;65:143–7. https://doi.org/10.1515/pjfns-2015-0025.

    Article  CAS  Google Scholar 

  13. Mühlschlegel P, Hauk A, Walter U, Sieber R. Lack of evidence for microplastic contamination in honey. Food Addit Contam - Part A Chem Anal Control Expo Risk Assess. 2017;34:1–8. https://doi.org/10.1080/19440049.2017.1347281.

    Article  CAS  Google Scholar 

  14. Michler GH. Electron microscopy of polymers. Berlin: Springer-Verlag; 2008.

    Google Scholar 

  15. Lambert S, Wagner M. Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere. 2016;145:265–8. https://doi.org/10.1016/j.chemosphere.2015.11.078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schimpf M, Caldwell K, Giddings JC. Field-flow fractionation handbook. New York: Wiley; 2000.

    Google Scholar 

  17. Gigault J, El Hadri H, Reynaud S, Deniau E, Grassl B. Asymmetrical flow field flow fractionation methods to characterize submicron particles: application to carbon-based aggregates and nanoplastics. Anal Bioanal Chem. 2017; https://doi.org/10.1007/s00216-017-0629-7.

  18. Bernhardt C. Particle size analysis: classification and sedimentation methods. London: Chapman & Hall; 1994.

    Book  Google Scholar 

  19. Loeschner K, Navratilova J, Købler C, Mølhave K, Wagner S, von der Kammer F, et al. Detection and characterization of silver nanoparticles in chicken meat by asymmetric flow field flow fractionation with detection by conventional or single particle ICP-MS. Anal Bioanal Chem. 2013;405:8185–95. https://doi.org/10.1007/s00216-013-7228-z.

    Article  CAS  PubMed  Google Scholar 

  20. Loeschner K, Navratilova J, Legros S, Wagner S, Grombe R, Snell J, et al. Optimization and evaluation of asymmetric flow field-flow fractionation of silver nanoparticles. J Chromatogr A. 2013;1272:116–25.

    Article  CAS  PubMed  Google Scholar 

  21. Wagner S, Legros S, Loeschner K, Liu J, Navratilova J, Grombe R, et al. First steps towards a generic sample preparation scheme for inorganic engineered nanoparticles in a complex matrix for detection, characterization, and quantification by asymmetric flow-field flow fractionation coupled to multi-angle light scattering and. J Anal At Spectrom. 2015;30:1286–96. https://doi.org/10.1039/C4JA00471J.

    Article  CAS  Google Scholar 

  22. Van Cauwenberghe L, Janssen CR. Microplastics in bivalves cultured for human consumption. Environ Pollut. 2014;193:65–70. https://doi.org/10.1016/j.envpol.2014.06.010.

    Article  CAS  PubMed  Google Scholar 

  23. Vandermeersch G, Van Cauwenberghe L, Janssen CR, Marques A, Granby K, Fait G, et al. A critical view on microplastic quantification in aquatic organisms. Environ Res. 2015;143:46–55. https://doi.org/10.1016/j.envres.2015.07.016.

    Article  CAS  PubMed  Google Scholar 

  24. Pereira JSF, Knorr CL, Pereira LSF, Moraes DP, Paniz JNG, Flores EMM, et al. Evaluation of sample preparation methods for polymer digestion and trace elements determination by ICPMS and ICPOES. J Anal At Spectrom. 2011;26:1849–57. https://doi.org/10.1039/C1JA10050E.

    Article  CAS  Google Scholar 

  25. Bendixen N, Losert S, Adlhart C, Lattuada M, Ulrich A. Membrane–particle interactions in an asymmetric flow field flow fractionation channel studied with titanium dioxide nanoparticles. J Chromatogr A. 2014;1334:92–100. https://doi.org/10.1016/j.chroma.2014.01.066.

    Article  CAS  PubMed  Google Scholar 

  26. Li J, Yang D, Li L, Jabeen K, Shi H. Microplastics in commercial bivalves from China. Environ Pollut. 2015;207:190–5. https://doi.org/10.1016/j.envpol.2015.09.018.

    Article  CAS  PubMed  Google Scholar 

  27. Rochman CM, Tahir A, Williams SL, Baxa DV, Lam R, Miller JT, et al. Anthropogenic debris in seafood: plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci Rep. 2015;5:14340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Van Cauwenberghe L, Claessens M, Vandegehuchte MB, Janssen CR. Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats. Environ Pollut. 2015;199:10–7. https://doi.org/10.1016/j.envpol.2015.01.008.

    Article  CAS  PubMed  Google Scholar 

  29. De Witte B, Devriese L, Bekaert K, Hoffman S, Vandermeersch G, Cooreman K, et al. Quality assessment of the blue mussel (Mytilus edulis): comparison between commercial and wild types. Mar Pollut Bull. 2014;85:146–55. https://doi.org/10.1016/j.marpolbul.2014.06.006.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The seabass sample was kindly provided by the ECsafeSEAFOOD project (n° 311820) granted by the European Union Seventh Framework Programme (FP7/2007-2013). The authors would like to thank the Danish Veterinary and Food Administration for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Loeschner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Food Safety Analysis with guest editor Steven J. Lehotay.

Electronic supplementary material

ESM 1

(PDF 1060 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Correia, M., Loeschner, K. Detection of nanoplastics in food by asymmetric flow field-flow fractionation coupled to multi-angle light scattering: possibilities, challenges and analytical limitations. Anal Bioanal Chem 410, 5603–5615 (2018). https://doi.org/10.1007/s00216-018-0919-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-0919-8

Keywords

Navigation