Skip to main content
Log in

Emerging technologies for optical spectral detection of reactive oxygen species

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This review surveys recent advances in optical spectral detection of reactive oxygen species (ROS), particularly singlet oxygen, superoxide, hydroxyl radical, and hydrogen peroxide. Advances using nanoparticles and self-organizing nanostructures as well as optical detection schemes are included. Measurements using plasmonic, luminescent, photocatalytic, or self-organizing nanoparticles are highlighted. The large number of spectrophotometric and luminescent probe methods are categorized by ROS sensing mechanism, signaling mode, (de)activation mechanism, if any, and spectral chromaticity. Reports describing multicomponent ROS detection or novel nanoscale probes are discussed. Measurements using ratiometric, multichannel, or time-resolved detection and nonlinear spectral transitions are reviewed. The focus on developing probe molecules for spectral detection documented over the last 20 years has continued, with sustained emphasis on luminescence detection, but with less focus on spectrophotometric measurements. Use of nanoparticles as probes, probe carriers, and compartmentalization agents in ROS detection is increasing. On the other hand, incorporation of advanced spectral methods, such as nonlinear transition and multichannel detection, is increasing slowly in ROS analysis. This indicates there is a substantial opportunity to develop ROS measurements with use of a synergistic combination of (multi)functional nanoscale systems and advanced optical detection methods to optimize the detection limit, selectivity, and response time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Burns JM, Cooper WJ, Ferry JL, King DW, DiMento BP, McNeill K, et al. Methods for reactive oxygen species (ROS) detection in aqueous environments. Aquat Sci. 2012;74:683–734. https://doi.org/10.1007/s00027-012-0251-x.

    Article  CAS  Google Scholar 

  2. Hayyan M, Hashim MA, Alnashef IM. Superoxide ion: generation and chemical implications. Chem Rev. 2016;116:3029–85. https://doi.org/10.1021/acs.chemrev.5b00407.

    Article  CAS  PubMed  Google Scholar 

  3. Fu PP, Xia QS, Hwang HM, Ray PC, Yu HT. Mechanisms of nanotoxicity: Generation of reactive oxygen species. J Food Drug Anal. 2014;22:64–75. https://doi.org/10.1016/j.jfda.2014.01.005.

    Article  CAS  PubMed  Google Scholar 

  4. Bethi B, Sonawane SH, Bhanvase BA, Gumfekar SP. Nanomaterials-based advanced oxidation processes for wastewater treatment: a review. Chem Eng Process Process Intensif. 2016;109:178–89. https://doi.org/10.1016/j.cep.2016.08.016.

    Article  CAS  Google Scholar 

  5. Zhou ZJ, Song JB, Nie LM, Chen XY. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem Soc Rev. 2016;45:6597–626. https://doi.org/10.1039/c6cs00271d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Holmstrom KM, Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol. 2014;15:411–21. https://doi.org/10.1038/nrm3801.

    Article  CAS  PubMed  Google Scholar 

  7. Fernández-Castro P, Vallejo M, San Román MF, Ortiz I. Insight on the fundamentals of advanced oxidation processes. Role and review of the determination methods of reactive oxygen species. J Chem Technol Biotechnol. 2015;90:796–820. https://doi.org/10.1002/jctb.4634.

    Article  CAS  Google Scholar 

  8. Dhoun S, Kaur S, Kaur P, Singh K. A cyanostilbene-boronate based AIEE probe for hydrogen peroxide—application in chemical processing. Sens Actuators B. 2017;245:95–103. https://doi.org/10.1016/j.snb.2017.01.143.

    Article  CAS  Google Scholar 

  9. Nosaka Y, Nosaka AY. Generation and detection of reactive oxygen species in photocatalysis. Chem Rev. 2017;117:11302–36. https://doi.org/10.1021/acs.chemrev.7b00161.

    Article  CAS  PubMed  Google Scholar 

  10. Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M, Ye J. Nano-photocatalytic materials: possibilities and challenges. Adv Mater. 2012;24:229–51. https://doi.org/10.1002/adma.201102752.

    Article  CAS  PubMed  Google Scholar 

  11. Cox A, Venkatachalam P, Sahi S, Sharma N. Reprint of: silver and titanium dioxide nanoparticle toxicity in plants: a review of current research. Plant Physiol Biochem. 2017;110:33–49. https://doi.org/10.1016/j.plaphy.2016.08.007.

    Article  CAS  PubMed  Google Scholar 

  12. Unfried K, Albrecht C, Klotz L-OO, Von Mikecz A, Grether-Beck S, Schins RPF. Cellular responses to nanoparticles: target structures and mechanisms. Nanotoxicology. 2007;1:52–71. https://doi.org/10.1080/00222930701314932.

    Article  CAS  Google Scholar 

  13. Sarkar A, Ghosh M, Sil PC. Nanotoxicity: oxidative stress mediated toxicity of metal and metal oxide nanoparticles. J Nanosci Nanotechnol. 2014;14:730–43. https://doi.org/10.1166/jnn.2014.8752.

    Article  CAS  PubMed  Google Scholar 

  14. Winterbourn CC. The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells. Biochim Biophys Acta. 2014;1840:730–8. https://doi.org/10.1016/j.bbagen.2013.05.004.

    Article  CAS  PubMed  Google Scholar 

  15. Andina D, Leroux J-CC, Luciani P. Ratiometric fluorescent probes for the detection of reactive oxygen species. Chem Eur J. 2017;23:13549–73. https://doi.org/10.1002/chem.201702458.

    Article  CAS  PubMed  Google Scholar 

  16. Borgmann S. Electrochemical quantification of reactive oxygen and nitrogen: challenges and opportunities. Anal Bioanal Chem. 2009;394:95–105. https://doi.org/10.1007/s00216-009-2692-1.

    Article  CAS  PubMed  Google Scholar 

  17. Butterfield DA, Perluigi M, Reed T, Muharib T, Hughes CP, Robinson RAS, et al. Redox proteomics in selected neurodegenerative disorders: from its infancy to future applications. Antioxid Redox Signal. 2012;17:1610–55. https://doi.org/10.1089/ars.2011.4109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schöneich C, Sharov VS. Mass spectrometry of protein modifications by reactive oxygen and nitrogen species. Free Radic Biol Med. 2006;41:1507–20. https://doi.org/10.1016/j.freeradbiomed.2006.08.013.

    Article  CAS  PubMed  Google Scholar 

  19. Wu HY, Song QJ, Ran GX, Lu XM, Xu BG. Recent developments in the detection of singlet oxygen with molecular spectroscopic methods. Trends Anal Chem. 2011;30:133–41. https://doi.org/10.1016/j.trac.2010.08.009.

    Article  CAS  Google Scholar 

  20. Chen XQ, Wang F, Hyun JY, Wei TW, Qiang J, Ren XT, et al. Recent progress in the development of fluorescent, luminescent and colorimetric probes for detection of reactive oxygen and nitrogen species. Chem Soc Rev. 2016;45:2976–3016. https://doi.org/10.1039/C6CS00192K.

    Article  CAS  PubMed  Google Scholar 

  21. Chan J, Dodani SC, Chang CJ. Reaction-based small-molecule fluorescent probes for chemoselective bioimaging. Nat Chem. 2012;4:973–84. https://doi.org/10.1038/nchem.1500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nagano T. Bioimaging probes for reactive oxygen species and reactive nitrogen species. J Clin Biochem Nutr. 2009;45:111–24. https://doi.org/10.3164/jcbn.R09-66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Debowska K, Debski D, Hardy M, Jakubowska M, Kalyanaraman B, Marcinek A, et al. Toward selective detection of reactive oxygen and nitrogen species with the use of fluorogenic probes – limitations, progress, and perspectives. Pharmacol Rep. 2015;67:756–64. https://doi.org/10.1016/j.pharep.2015.03.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Anquez F, Sivéry A, El Yazidi-Belkoura I, Zemmouri J, Suret P, Randoux S, Courtade E (2016) Production of singlet oxygen by direct photoactivation of molecular oxygen. In: Nonell S, Flors C (eds) Singlet oxygen: applications in biosciences and nanosciences, vol 1. Royal Society of Chemistry, Cambridge, pp 75–91

  25. Ogilby PR. Singlet oxygen: there is indeed something new under the sun. Chem Soc Rev. 2010;39:3181–209. https://doi.org/10.1039/b926014p.

    Article  CAS  PubMed  Google Scholar 

  26. Battino R, Rettich TR, Tominaga T. The solubility of oxygen and ozone in liquids. J Phys Chem Ref Data. 1983;12:163–78.

    Article  CAS  Google Scholar 

  27. Salokhiddinov KI, Byteva IM, Gurinovich GP. Lifetime of singlet oxygen in various solvents. J Appl Spectrosc. 1981;34:561–4. https://doi.org/10.1007/BF00613067.

    Article  Google Scholar 

  28. Olea AF, Wilkinson F. Singlet oxygen production from excited singlet and triplet states of anthracene derivatives in acetonitrile. J Phys Chem. 1995;99:4518–24. https://doi.org/10.1021/j100013a022.

    Article  CAS  Google Scholar 

  29. Schweitzer C, Schmidt R. Physical mechanisms of generation and deactivation of singlet oxygen. Chem Rev. 2003;103:1685–757. https://doi.org/10.1002/chin.200329267.

    Article  CAS  PubMed  Google Scholar 

  30. Davies MJ. Singlet oxygen-mediated damage to proteins and its consequences. Biochem Biophys Res Commun. 2003;305:761–70. https://doi.org/10.1016/S0006-291X(03)00817-9.

    Article  CAS  PubMed  Google Scholar 

  31. Aubry J-MM, Mandardcazin B, Rougee M, Bensasson RV, Mandard-Cazin B, Rougee M, et al. Kinetic studies of singlet oxygen [4 + 2]-cycloadditions with cyclic 1,3-dienes in 28 solvents. J Am Chem Soc. 1995;117:9159–64. https://doi.org/10.1021/ja00141a006.

    Article  CAS  Google Scholar 

  32. Bielski BHJJ. Reevaluation of the spectral and kinetic properties of HO2and O2 -free radicals. Photochem Photobiol. 1978;28:645–9. https://doi.org/10.1111/j.1751-1097.1978.tb06986.x.

    Article  CAS  Google Scholar 

  33. Imlay JA. Pathways of oxidative damage. Annu Rev Microbiol. 2003;57:395–418. https://doi.org/10.1146/annurev.micro.57.030502.090938.

    Article  CAS  PubMed  Google Scholar 

  34. Imlay JA. Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem. 2008;77:755–76. https://doi.org/10.1146/annurev.biochem.77.061606.161055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guzik TJ, Korbut R, Adamek-Guzik T. Nitric oxide and superoxide in inflammation and immune regulation. J Physiol Pharmacol. 2003;54:469–87.

    CAS  PubMed  Google Scholar 

  36. Baxter RM, Carey JH. Evidence for photochemical generation of superoxide ion in humic waters. Nature. 1983;306:575–6. https://doi.org/10.1038/306575a0.

    Article  CAS  Google Scholar 

  37. Shaked Y, Rose A. Seas of superoxide. Science. 2013;340:1176–7. https://doi.org/10.1126/science.1240195.

    Article  PubMed  Google Scholar 

  38. Anastasio C, McGregor KG. Chemistry of fog waters in California’s Central Valley: 1. In situ photoformation of hydroxyl radical and singlet molecular oxygen. Atmos Environ. 2001;35:1079–89. https://doi.org/10.1016/S1352-2310(00)00281-8.

    Article  CAS  Google Scholar 

  39. Stobiecka M, Prance A, Coopersmith K, Hepel M. Antioxidant effectiveness in preventing paraquat-mediated oxidative DNA damage in the presence of H2O2. In: Andreescu S, Hepel M, editors. Oxidative stress: diagnostics, prevention, and therapy. Washington: American Chemical Society; 2011. p. 211–33.

    Chapter  Google Scholar 

  40. Chen S, Schopfer P. Hydroxyl-radical production in physiological reactions. A novel function of peroxidase. Eur J Biochem. 1999;260:726–35. https://doi.org/10.1046/j.1432-1327.1999.00199.x.

    Article  CAS  PubMed  Google Scholar 

  41. Hoigne J. Inter-calibration of OH radical sources and water quality parameters. Water Sci Technol. 1997;35:1–8. https://doi.org/10.1016/S0273-1223(97)00002-4.

    Article  CAS  Google Scholar 

  42. Wang D, Zhao LX, Ma HY, Zhang H, Guo L-HH. Quantitative analysis of reactive oxygen species photogenerated on metal oxide nanoparticles and their bacteria toxicity: the role of superoxide radicals. Environ Sci Technol. 2017;51:10137–45. https://doi.org/10.1021/acs.est.7b00473.

    Article  CAS  PubMed  Google Scholar 

  43. Contado C. Nanomaterials in consumer products: a challenging analytical problem. Front Chem. 2015;3:48. https://doi.org/10.3389/fchem.2015.00048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. International Organization for Standardization (2008) ISO/TS 27687:2008 - nanotechnologies -- terminology and definitions for nano-objects -- nanoparticle, nanofibre and nanoplate. https://www.iso.org/standard/44278.html

  45. ASTM International (2012) ASTM E2456 - 06(2012) standard terminology relating to nanotechnology. https://www.astm.org/Standards/E2456.htm

  46. Boken J, Khurana P, Thatai S, Kumar D, Prasad S. Plasmonic nanoparticles and their analytical applications: a review. Appl Spectrosc Rev. 2017;52:774–820. https://doi.org/10.1080/05704928.2017.1312427.

    Article  CAS  Google Scholar 

  47. Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res. 2008;41:1578–86. https://doi.org/10.1021/ar7002804.

    Article  CAS  PubMed  Google Scholar 

  48. Silvera Batista CA, Larson RG, Kotov NA. Nonadditivity of nanoparticle interactions. Science. 2015;350:1242477. https://doi.org/10.1126/science.1242477.

    Article  CAS  Google Scholar 

  49. Sadik OA. Anthropogenic nanoparticles in the environment. Environ Sci Process Impacts. 2013;15:19–20. https://doi.org/10.1039/C2EM90063G.

    Article  CAS  PubMed  Google Scholar 

  50. Abdal Dayem A, Hossain M, Lee S, Kim K, Saha S, Yang G-M, et al. The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int J Mol Sci. 2017;18:120. https://doi.org/10.3390/ijms18010120.

    Article  CAS  PubMed Central  Google Scholar 

  51. Willets KA, Van Duyne RP. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem. 2007;58:267–97. https://doi.org/10.1146/annurev.physchem.58.032806.104607.

    Article  CAS  PubMed  Google Scholar 

  52. Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B. 2003;107:668–77. https://doi.org/10.1021/jp026731y.

    Article  CAS  Google Scholar 

  53. Gruenke NL, Cardinal MF, McAnally MO, Frontiera RR, Schatz GC, Van Duyne RP. Ultrafast and nonlinear surface-enhanced Raman spectroscopy. Chem Soc Rev. 2016;45:2263–90. https://doi.org/10.1039/C5CS00763A.

    Article  CAS  PubMed  Google Scholar 

  54. Doane TL, Burda C. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem Soc Rev. 2012;41:2885. https://doi.org/10.1039/c2cs15260f.

    Article  CAS  PubMed  Google Scholar 

  55. Mishra H, Mali BL, Karolin J, Dragan AI, Geddes CD. Experimental and theoretical study of the distance dependence of metal-enhanced fluorescence, phosphorescence and delayed fluorescence in a single system. Phys Chem Chem Phys. 2013;15:19538. https://doi.org/10.1039/c3cp50633a.

    Article  CAS  PubMed  Google Scholar 

  56. Le Ru EC, Etchegoin PG. Single-molecule surface-enhanced Raman spectroscopy. Annu Rev Phys Chem. 2012;63:65–87. https://doi.org/10.1146/annurev-physchem-032511-143757.

    Article  CAS  PubMed  Google Scholar 

  57. Das A, Snee PT. Synthetic developments of nontoxic quantum dots. ChemPhysChem. 2016;17:598–617. https://doi.org/10.1002/cphc.201500837.

    Article  CAS  PubMed  Google Scholar 

  58. Michalet X. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005;307:538–44. https://doi.org/10.1126/science.1104274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Peng F, Su Y, Zhong Y, Fan C, Lee S-T, He Y. Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. Acc Chem Res. 2014;47:612–23. https://doi.org/10.1021/ar400221g.

    Article  CAS  PubMed  Google Scholar 

  60. Wolfbeis OS. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev. 2015;44:4743–68. https://doi.org/10.1039/C4CS00392F.

    Article  CAS  PubMed  Google Scholar 

  61. Georgakilas V, Perman JA, Tucek J, Zboril R. Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev. 2015;115:4744–822. https://doi.org/10.1021/cr500304f.

    Article  CAS  PubMed  Google Scholar 

  62. Zhu S, Song Y, Zhao X, Shao J, Zhang J, Yang B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res. 2015;8:355–81. https://doi.org/10.1007/s12274-014-0644-3.

    Article  CAS  Google Scholar 

  63. Ding H, Yu S-B, Wei J-S, Xiong H-M. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano. 2016;10:484–91. https://doi.org/10.1021/acsnano.5b05406.

    Article  CAS  PubMed  Google Scholar 

  64. Chen G, Qiu H, Prasad PN, Chen X. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem Rev. 2014;114:5161–214. https://doi.org/10.1021/cr400425h.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang G, Peng Q, Li Y. Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, and applications. Acc Chem Res. 2011;44:322–32. https://doi.org/10.1021/ar100129p.

    Article  CAS  PubMed  Google Scholar 

  66. Yang Y, Zhong H, Tian C. Photocatalytic mechanisms of modified titania under visible light. Res Chem Intermed. 2011;37:91–102. https://doi.org/10.1007/s11164-010-0232-4.

    Article  CAS  Google Scholar 

  67. Li Y, Zhang W, Niu JF, Chen YS. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano. 2012;6:5164–73. https://doi.org/10.1021/nn300934k.

    Article  CAS  PubMed  Google Scholar 

  68. Paramasivam I, Jha H, Liu N, Schmuki P. A review of photocatalysis using self-organized TiO2 nanotubes and other ordered oxide nanostructures. Small. 2012;8:3073–103. https://doi.org/10.1002/smll.201200564.

    Article  CAS  PubMed  Google Scholar 

  69. Perullini M, Aldabe Bilmes SA, Jobbágy M. Cerium oxide nanoparticles: structure, applications, reactivity, and eco-toxicology. In: Brayner R, Fiévet F, Coradin T, editors. Nanomaterials: a danger or a promise? London: Springer; 2013. p. 307–33.

    Chapter  Google Scholar 

  70. Guo R, Wang Y, Yu S, Zhu W, Zheng F, Liu W, et al. Dual role of hydrogen peroxide on the oxidase-like activity of nanoceria and its application for colorimetric hydrogen peroxide and glucose sensing. RSC Adv. 2016;6:59939–45. https://doi.org/10.1039/C6RA09217A.

    Article  CAS  Google Scholar 

  71. Cheng H, Lin S, Muhammad F, Lin Y-W, Wei H. Rationally modulate the oxidase-like activity of nanoceria for self-regulated bioassays. ACS Sens. 2016;1:1336–43. https://doi.org/10.1021/acssensors.6b00500.

    Article  CAS  Google Scholar 

  72. Jeetah R, Bhaw-Luximon A, Jhurry D. Nanopharmaceutics: phytochemical-based controlled or sustained drug-delivery systems for cancer treatment. J Biomed Nanotechnol. 2014;10:1810–40. https://doi.org/10.1166/jbn.2014.1884.

    Article  CAS  PubMed  Google Scholar 

  73. Ruiz ME, Gantner ME, Talevi A. Applications of nanosystems to anticancer drug therapy (part II. Dendrimers, micelles, lipid-based nanosystems). Recent Pat Anticancer Drug Discov. 2014;9:99–128.

    Article  CAS  Google Scholar 

  74. Deda DK, Araki K. Nanotechnology, light and chemical action: an effective combination to kill cancer cells. J Braz Chem Soc. 2015;26:2448–70. https://doi.org/10.5935/0103-5053.20150316.

    Article  CAS  Google Scholar 

  75. Saravanakumar G, Lee J, Kim J, Kim WJ. Visible light-induced singlet oxygen-mediated intracellular disassembly of polymeric micelles co-loaded with a photosensitizer and an anticancer drug for enhanced photodynamic therapy. Chem Commun. 2015;51:9995–8. https://doi.org/10.1039/C5CC01937K.

    Article  CAS  Google Scholar 

  76. Yingchoncharoen P, Kalinowski DS, Richardson DR. Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come. Pharmacol Rev. 2016;68:701–87. https://doi.org/10.1124/pr.115.012070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Potyrailo RA, Hobbs SE, Hieftje GM. Optical waveguide sensors in analytical chemistry: today’s instrumentation, applications and trends for future development. Fresenius J Anal Chem. 1998;362:349–73. https://doi.org/10.1007/s002160051086.

    Article  CAS  Google Scholar 

  78. Li B, Lin L, Lin H, Wilson BC. Photosensitized singlet oxygen generation and detection: recent advances and future perspectives in cancer photodynamic therapy. J Biophotonics. 2016;9:1314–25. https://doi.org/10.1002/jbio.201600055.

    Article  CAS  PubMed  Google Scholar 

  79. Moßhammer M, Kühl M, Koren K. Possibilities and challenges for quantitative optical sensing of hydrogen peroxide. Chemosensors. 2017;5:28. https://doi.org/10.3390/chemosensors5040028.

    Article  CAS  Google Scholar 

  80. Burmistrova N, Kolontaeva O, Duerkop A. New nanomaterials and luminescent optical sensors for detection of hydrogen peroxide. Chemosensors. 2015;3:253–73. https://doi.org/10.3390/chemosensors3040253.

    Article  CAS  Google Scholar 

  81. Chen L, Wang N, Wang X, Ai S. Protein-directed in situ synthesis of platinum nanoparticles with superior peroxidase-like activity, and their use for photometric determination of hydrogen peroxide. Microchim Acta. 2013;180:1517–22. https://doi.org/10.1007/s00604-013-1068-6.

    Article  CAS  Google Scholar 

  82. Tashkhourian J, Hormozi-Nezhad MR, Khodaveisi J, Dashti R. Localized surface plasmon resonance sensor for simultaneous kinetic determination of peroxyacetic acid and hydrogen peroxide. Anal Chim Acta. 2013;762:87–93. https://doi.org/10.1016/j.aca.2012.11.058.

    Article  CAS  PubMed  Google Scholar 

  83. Üzer A, Durmazel S, Erçağ E, Apak R. Determination of hydrogen peroxide and triacetone triperoxide (TATP) with a silver nanoparticles—based turn-on colorimetric sensor. Sens Actuators B Chem. 2017;247:98–107. https://doi.org/10.1016/j.snb.2017.03.012.

    Article  CAS  Google Scholar 

  84. Rivero PJ, Ibañez E, Goicoechea J, Urrutia A, Matias IR, Arregui FJ. A self-referenced optical colorimetric sensor based on silver and gold nanoparticles for quantitative determination of hydrogen peroxide. Sens Actuators B Chem. 2017;251:624–31. https://doi.org/10.1016/j.snb.2017.05.110.

    Article  CAS  Google Scholar 

  85. Sun X, Guo S, Chung C-S, Zhu W, Sun S. A sensitive H2O2 assay based on dumbbell-like PtPd-Fe3O4 nanoparticles. Adv Mater. 2013;25:132–6. https://doi.org/10.1002/adma.201203218.

    Article  CAS  PubMed  Google Scholar 

  86. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2:577–83. https://doi.org/10.1038/nnano.2007.260.

    Article  CAS  PubMed  Google Scholar 

  87. Jv Y, Li B, Cao R. Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection. Chem Commun. 2010;46:8017. https://doi.org/10.1039/c0cc02698k.

    Article  CAS  Google Scholar 

  88. Guo Q, Liu Y, Jia Q, Zhang G, Fan H, Liu L, et al. Ultrahigh sensitivity multifunctional nanoprobe for the detection of hydroxyl radical and evaluation of heavy metal induced oxidative stress in live hepatocyte. Anal Chem. 2017;89:4986–93. https://doi.org/10.1021/acs.analchem.7b00306.

    Article  CAS  PubMed  Google Scholar 

  89. Gomes A, Fernandes E, Lima JLFCFC. Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods. 2005;65:45–80. https://doi.org/10.1016/j.jbbm.2005.10.003.

    Article  CAS  PubMed  Google Scholar 

  90. Chen X, Tian X, Shin I, Yoon J. Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. Chem Soc Rev. 2011;40:4783. https://doi.org/10.1039/c1cs15037e.

    Article  CAS  PubMed  Google Scholar 

  91. Kim D, Ryu HG, Ahn KH. Recent development of two-photon fluorescent probes for bioimaging. Org Biomol Chem. 2014;12:4550–66. https://doi.org/10.1039/C4OB00431K.

    Article  CAS  PubMed  Google Scholar 

  92. Lu H, Shimizu S, Mack J, Shen Z, Kobayashi N. Synthesis and spectroscopic properties of fused-ring-expanded aza-boradiazaindacenes. Chem Asian J. 2011;6:1026–37. https://doi.org/10.1002/asia.201000641.

    Article  CAS  PubMed  Google Scholar 

  93. Wu J, Liu W, Ge J, Zhang H, Wang P. New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chem Soc Rev. 2011;40:3483. https://doi.org/10.1039/c0cs00224k.

    Article  CAS  PubMed  Google Scholar 

  94. Tsaplev YB. Chemiluminescence determination of hydrogen peroxide. J Anal Chem. 2012;67:506–14. https://doi.org/10.1134/S1061934812040028.

    Article  CAS  Google Scholar 

  95. Merényi G, Lind J, Eriksen TE. Luminol chemiluminescence: chemistry, excitation, emitter. J Biolumin Chemilumin. 1990;5:53–6. https://doi.org/10.1002/bio.1170050111.

    Article  PubMed  Google Scholar 

  96. Sunahara H, Urano Y, Kojima H, Nagano T. Design and synthesis of a library of BODIPY-based environmental polarity sensors utilizing photoinduced electron-transfer-controlled fluorescence ON/OFF switching. J Am Chem Soc. 2007;129:5597–604. https://doi.org/10.1021/ja068551y.

    Article  CAS  PubMed  Google Scholar 

  97. Yin H-J, Liu Y-J, Gao J, Wang K-Z. A highly sensitive and selective visible-light excitable luminescent probe for singlet oxygen based on a dinuclear ruthenium complex. Dalton Trans. 2017;46:3325–31. https://doi.org/10.1039/c6dt04813g.

    Article  CAS  PubMed  Google Scholar 

  98. Ruiz-González R, Bresolí-Obach R, Gulías Ò, Agut M, Savoie H, Boyle RW, et al. NanoSOSG: a nanostructured fluorescent probe for the detection of intracellular singlet oxygen. Angew Chem Int Ed. 2017;56:2885–8. https://doi.org/10.1002/anie.201609050.

    Article  CAS  Google Scholar 

  99. Filatov MA, Karuthedath S, Polestshuk PM, Savoie H, Flanagan KJ, Sy C, et al. Generation of triplet excited states via photoinduced electron transfer in meso-anthra-BODIPY: fluorogenic response toward singlet oxygen in solution and in vitro. J Am Chem Soc. 2017;139:6282–5. https://doi.org/10.1021/jacs.7b00551.

    Article  CAS  PubMed  Google Scholar 

  100. Liang X, Xu X, Qiao D, Yin Z, Shang L. Dual mechanism of an intramolecular charge transfer (ICT)-FRET-based fluorescent probe for the selective detection of hydrogen peroxide. Chem Asian J. 2017:3187–94. https://doi.org/10.1002/asia.201701382.

  101. Niu J, Fan J, Wang X, Xiao Y, Xie X, Jiao X, et al. Simultaneous fluorescence and chemiluminescence turned on by aggregation-induced emission for real-time monitoring of endogenous superoxide anion in live cells. Anal Chem. 2017;89:7210–5. https://doi.org/10.1021/acs.analchem.7b01425.

    Article  CAS  PubMed  Google Scholar 

  102. Liu Y, Jia Q, Guo Q, Jiang A, Zhou J. In vivo oxidative stress monitoring through intracellular hydroxyl radicals detection by recyclable upconversion nanoprobes. Anal Chem. 2017;89:12299–305. https://doi.org/10.1021/acs.analchem.7b03270.

    Article  CAS  PubMed  Google Scholar 

  103. Wragg FPH, Fuller SJ, Freshwater R, Green DC, Kelly FJ, Kalberer M. An automated online instrument to quantify aerosol-bound reactive oxygen species (ROS) for ambient measurement and health-relevant aerosol studies. Atmos Meas Tech. 2016;9:4891–900. https://doi.org/10.5194/amt-9-4891-2016.

    Article  CAS  Google Scholar 

  104. Chen LC, Lin LS, Li YR, Lin HY, Qiu ZH, Gu Y, et al. Effect of oxygen concentration on singlet oxygen luminescence detection. J Lumin. 2014;152:98–102. https://doi.org/10.1016/j.jlumin.2013.10.034.

    Article  CAS  Google Scholar 

  105. Nikiforov A, Li L, Britun N, Snyders R, Vanraes P, Leys C. Influence of air diffusion on the OH radicals and atomic O distribution in an atmospheric Ar (bio)plasma jet. Plasma Sources Sci Technol. 2014;23:015015. https://doi.org/10.1088/0963-0252/23/1/015015.

    Article  CAS  Google Scholar 

  106. Liu T, Chen Z, Yu W, You S. Characterization of organic membrane foulants in a submerged membrane bioreactor with pre-ozonation using three-dimensional excitation–emission matrix fluorescence spectroscopy. Water Res. 2011;45:2111–21. https://doi.org/10.1016/j.watres.2010.12.023.

    Article  CAS  PubMed  Google Scholar 

  107. Timko SA, Romera-Castillo C, Jaffé R, Cooper WJ. Photo-reactivity of natural dissolved organic matter from fresh to marine waters in the Florida Everglades, USA. Environ Sci Process Impacts. 2014;16:866–78. https://doi.org/10.1039/C3EM00591G.

    Article  CAS  PubMed  Google Scholar 

  108. Batista APS, Teixeira ACSC, Cooper WJ, Cottrell BA. Correlating the chemical and spectroscopic characteristics of natural organic matter with the photodegradation of sulfamerazine. Water Res. 2016;93:20–9. https://doi.org/10.1016/j.watres.2015.11.036.

    Article  CAS  PubMed  Google Scholar 

  109. Fales AM, Yuan H, Vo-Dinh T. Silica-coated gold nanostars for combined surface-enhanced Raman scattering (SERS) detection and singlet-oxygen generation: a potential nanoplatform for theranostics. Langmuir. 2011;27:12186–90. https://doi.org/10.1021/la202602q.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chen Q, Rao Y, Ma X, Dong J, Qian W. Raman spectroscopy for hydrogen peroxide scavenging activity assay using gold nanoshell precursor nanocomposites as SERS probes. Anal Methods. 2011;3:274–9. https://doi.org/10.1039/c0ay00629g.

    Article  CAS  Google Scholar 

  111. Peng R, Si Y, Deng T, Zheng J, Li J, Yang R, et al. A novel SERS nanoprobe for the ratiometric imaging of hydrogen peroxide in living cells. Chem Commun. 2016;52:8553–6. https://doi.org/10.1039/c6cc03412h.

    Article  CAS  Google Scholar 

  112. Qu LL, Liu YY, He SH, Chen JQ, Liang Y, Li HT. Highly selective and sensitive surface enhanced Raman scattering nanosensors for detection of hydrogen peroxide in living cells. Biosens Bioelectron. 2016;77:292–8. https://doi.org/10.1016/j.bios.2015.09.039.

    Article  CAS  PubMed  Google Scholar 

  113. Gu X, Wang H, Schultz ZD, Camden JP. Sensing glucose in urine and serum and hydrogen peroxide in living cells by use of a novel boronate nanoprobe based on surface-enhanced Raman spectroscopy. Anal Chem. 2016;88:7191–7. https://doi.org/10.1021/acs.analchem.6b01378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kumar S, Kumar A, Kim G-H, Rhim W-K, Hartman KL, Nam J-M. Myoglobin and polydopamine-engineered Raman nanoprobes for detecting, imaging, and monitoring reactive oxygen species in biological samples and living cells. Small. 2017;13:1701584. https://doi.org/10.1002/smll.201701584.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon L. Neal.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Published in the topical collection Analytical Developments in Advancing Safety in Nanotechnology with guest editors Lisa Holland and Wenwan Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herman, J., Zhang, Y., Castranova, V. et al. Emerging technologies for optical spectral detection of reactive oxygen species. Anal Bioanal Chem 410, 6079–6095 (2018). https://doi.org/10.1007/s00216-018-1233-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1233-1

Keywords

Navigation