Skip to main content

Ultraviolet-Visible (UV-Vis) Spectroscopy

  • Chapter
  • First Online:
Springer Handbook of Advanced Catalyst Characterization

Abstract

Ultraviolet-Visible (UV-Vis) spectroscopy is a versatile and powerful analytical method, which allows to investigate a wide variety of catalysts in both the liquid-phase and solid-state and their interfaces at elevated temperatures and pressures. In the case of solid catalysts, they can be studied in the form of powders (e.g., in diffuse reflectance mode) and as thin wafers (in transmission mode), and when combined with a microscope even in the form of catalyst bodies (e.g., extrudates) and single crystals. In the past two decades, UV-Vis spectroscopy has been increasingly used under in situ and operando conditions to shed light on/gain insight in the working principles of heterogeneous catalysts, homogeneous catalysts, electrocatalysts, as well as photocatalysts. One of the advantages of this method is that it can simultaneously measure, e.g., the electronic transitions of organic molecules (mainly via their nπ* and ππ* transitions) and transition metal oxides or ions (via their d-d and charge transfer transitions). Unfortunately, absorption bands in the UV-Vis range are often broad and overlapping and hence their interpretations are not always trivial. Advanced theoretical calculations are required to provide a proper foundation of their interpretation, while, e.g., chemometrics can help prevent biased analysis when many (time-resolved) spectra are collected. Finally, UV-Vis spectroscopy is often combined with other analytical methods to provide complementary information. Examples include X-ray absorption spectroscopy and diffraction, next to vibrational spectroscopy (i.e., infrared and Raman) and magnetic resonance (i.e., electron spin resonance and nuclear magnetic resonance) methods. The above-described scientific and instrumental developments will be illustrated by using a selection of showcase examples, covering the different areas of catalysis. The chapter concludes with some main observations as well as some future developments on what might become possible in the not-too-distant future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (a) Gauglitz, G., Vo-Dinh, T. (eds.): Handbook of Spectroscopy. Wiley-VCH, Weinheim (2003); (b) Atkins, P., de Paula, J., Keeler, J.: Physical Chemistry, 11th edn. Oxford University Press, Oxford (2014)

    Google Scholar 

  2. Hollas, J.M.: Modern Spectroscopy, 4th edn. Wiley, Chichester (2004)

    Google Scholar 

  3. (a) Verberckmoes, A.A., Weckhuysen, B.M., Schoonheydt, R.A.: Spectroscopy and coordination chemistry of cobalt in molecular sieves. Microporous Mesoporous Mater. 22, 165–178 (1998); (b) Schoonheydt, R.A.: Transition-metal ions in zeolites: siting and energetics of Cu2+. Catal. Rev. Sci. Eng. 35, 129–168 (1993)

    Google Scholar 

  4. (a) Bonneviot, L., Legendre, O., Kermarec, M., Olivier, D., Che, M.: Characterization by UV-Vis-NIR reflectance spectroscopy of the exchange sites of nickel on silica. J. Colloid Interface Sci. 134, 534–547 (1990); (b) Boujday, S., Lambert, J.F., Che, M.: Amorphous silica as a versatile ligand for Ni-II amine complexes: toward interfacial molecular recognition. ChemPhysChem. 5, 1003–1013 (2004)

    Google Scholar 

  5. (a) Groppo, E., Lamberti, C., Bordiga, S., Spoto, G., Zecchina, A.: The structure of active centers and the ethylene polymerization mechanism on the Cr/SiO2 catalyst: a frontier for the characterization methods. Chem. Rev. 105, 115–183 (2005); (b) Groppo, E., Zecchina, A., Barzan, C., Vitillo, J.G.: Low temperature activation and reactivity of CO2 over a CrII-based heterogeneous catalyst: a spectroscopic study. Phys. Chem. Chem. Phys. 14, 6538–6543 (2012)

    Google Scholar 

  6. (a) Dedecek, J., Sobalik, Z., Wichterlova, B.: Siting and distribution of framework aluminium atoms in silicon-rich zeolites and impact on catalysis. Catal. Rev. Sci. Eng. 54, 135–223 (2012); (b) Dedecek, J., Kaucky, D., Wichterlova, B.: Co2+ ion siting in pentasil-containing zeolites, part 3. Co2+ ion sites and their occupation in ZSM-5: a Vis diffuse reflectance spectroscopy study. Microporous Mesoporous Mater. 35, 483–494 (2000)

    Google Scholar 

  7. (a) Ross-Medgaarden, E.I., Wachs, I.E.: Structural determination of bulk and surface tungsten oxides with UV-vis diffuse reflectance spectroscopy and Raman spectroscopy. J. Phys. Chem. C. 111, 15089–15099 (2007); (b) Wachs, I.E.: Dalton Trans. 42, 11762–11769 (2013); (c) Lee, E.L., Wachs, I.E.: In situ spectroscopic investigation of the molecular and electronic structures of SiO2 supported surface metal oxides. J. Phys. Chem. C. 111, 14410–14425 (2007)

    Google Scholar 

  8. (a) Khodakov, A., Yang, J., Su, S., Iglesia, E., Bell, A.T.: Structure and properties of vanadium oxide zirconia catalysts for propane oxidative dehydrogenation. J. Catal. 177, 343–351 (1998); (b) Khodakov, A., Olfhof, B., Bell, A.T., Iglesia, E.: J. Catal. 181, 205–216 (1999)

    Google Scholar 

  9. Sojka, Z., Bozon-Verduraz, F., Che, M.: UV-Vis-NIR and EPR spectroscopies. In: Ertl, G., Knözinger, Schüth, F., Weitkamp, J. (eds.) Handbook of Heterogeneous Catalysis, vol. 2, pp. 1039–1065. Wiley-VCH, Weinheim (2008)

    Google Scholar 

  10. Burns, R.G.: Mineralogical Applications of Crystal Field Theory, 2nd edn. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  11. Klokishner, S.L., Reu, O., Chan-Thaw, C.E., Jentoft, F.C., Schlögl, R.: Redox properties of manganese-containing zirconia solid solution catalysts analyzed by in situ UV-Vis spectroscopy and crystal field theory. J. Phys. Chem. A. 115, 8100–8112 (2011)

    CAS  Google Scholar 

  12. Jentoft, F.C.: In: Che, M., Védrine, J.C. (eds.) Characterization of Solid Materials and Heterogeneous Catalysts: From Structure to Surface Reactivity, 1st edn, pp. 89–147. Wiley-VCH, Weinheim (2012)

    Google Scholar 

  13. Schoonheydt, R.A.: UV-Vis-NIR spectroscopy and microscopy of heterogeneous catalysts. Chem. Soc. Rev. 39, 5051–5066 (2010)

    CAS  Google Scholar 

  14. Jentoft, F.C.: Ultraviolet-visible-near infrared spectroscopy in catalysis: theory, experiment, analysis and application under reaction conditions. Adv. Catal. 52, 129–211 (2009)

    CAS  Google Scholar 

  15. Schoonheydt, R.A.: Diffuse reflectance spectroscopy. In: Delannay, F. (ed.) Characterization of Heterogeneous Catalysts, pp. 125–160. Marcel Dekker, New York (1984)

    Google Scholar 

  16. Kellermann, R.: Diffuse reflectance and photoacoustic spectroscopies. In: Delgass, W.N., Haller, G.L., Kellermann, R., Lunsford, J.H. (eds.) Spectroscopy in Heterogeneous Catalysis, pp. 86–131. Academic Press, New York (1979)

    Google Scholar 

  17. Klier, K.: Reflectance spectroscopy as a tool for investigating dispersed solids and their surfaces. Catal. Rev. Sci. Eng. 1, 207–232 (1968)

    Google Scholar 

  18. Kortüm, G.: Reflectance Spectroscopy. Springer, Berlin (1969)

    Google Scholar 

  19. Weckhuysen, B.M., Schoonheydt, R.A.: Recent progress in diffuse reflectance spectroscopy of supported metal oxide catalysts. Catal. Today. 49, 441–451 (1999)

    CAS  Google Scholar 

  20. Weckhuysen, B.M., Schoonheydt, R.A.: Electronic spectroscopies. In: Weckhuysen, B.M., Van der Voort, P., Catana, G. (eds.) Spectroscopy of Transition Metal Ions on Surfaces, pp. 221–268. Leuven University Press, Leuven (2000)

    Google Scholar 

  21. Weckhuysen, B.M.: Ultraviolet-visible spectroscopy. In: Weckhuysen, B.M. (ed.) In Situ Spectroscopy of Catalysts, pp. 255–270. American Scientific Publishers, Stevenson Ranch (2004)

    Google Scholar 

  22. (a) Banares, M.A.: Operando methodology: Combination of in situ spectroscopy and simultaneous activity measurements under catalytic reaction conditions. Catal. Today. 10, 71–77 (2005); (b) Weckhuysen, B.M.: Determining the active site in a catalytic process: Operando spectroscopy is more than a buzzword. Phys. Chem. Chem. Phys. 5, 4351–4360 (2003)

    Google Scholar 

  23. Förster, H., Seebode, J., Fejes, P., Kiricsi, I.: Formation of carbocations from C3 compounds in zeolites of different acidities. J. Chem. Soc. Faraday Trans. 83, 1109–1117 (1987)

    Google Scholar 

  24. Melsheimer, J., Ziegler, D.: Ethene transformation on HZSM-5 studied by combined UV-Vis spectroscopy and on-line gas chromatography. J. Chem. Soc. Faraday Trans. 88, 2101–2108 (1992)

    CAS  Google Scholar 

  25. Sendoda, Y., Ono, Y., Keii, T.: Properties of nickel cations in X-zeolite as studied by electronic spectroscopy. J. Catal. 39, 357–362 (1975)

    CAS  Google Scholar 

  26. Weckhuysen, B.M., Bensalem, A., Schoonheydt, R.A.: In situ UV-Vis diffuse reflectance spectroscopy-online activity measurements: significance of Crn+-species (n = 2, 3 and 6) in n-butane dehydrogenation catalyzed by supported chromium oxide catalysts. J. Chem. Soc. Faraday Trans. 94, 2011–2014 (1998)

    CAS  Google Scholar 

  27. Weckhuysen, B.M., Verberckmoes, A.A., Debaere, J., Ooms, K., Langhans, I., Schoonheydt, R.A.: In situ UV-Vis diffuse reflectance spectroscopy-on line activity measurements of supported chromium oxide catalysts: relating isobutane dehydrogenation activity with Cr-speciation via experimental design. J. Mol. Catal. A: Chemical. 151, 115–131 (2000)

    CAS  Google Scholar 

  28. Bruckner, A.: Simultaneous combination of in-situ EPR/UV-Vis/on line GC: a novel setup for investigating transition metal oxide catalysts under working conditions. Chem. Commun., (20), 2122–2123 (2001)

    Google Scholar 

  29. Nijhuis, T.A., Tinnemans, S.J., Visser, T., Weckhuysen, B.M.: Operando spectroscopic investigation of supported metal oxide catalysts by combined time-resolved UV-Vis/Raman/online mass spectrometry. Phys. Chem. Chem. Phys. 5, 4361–4365 (2003)

    CAS  Google Scholar 

  30. Bruckner, A.: Monitoring transition metal ions (TMI) in oxide catalysts during (re)action: the power of operando EPR. Phys. Chem. Chem. Phys. 5, 4461–4472 (2003)

    Google Scholar 

  31. Melsheimer, J., Thiede, M., Ahmad, R., Tzolova-Müller, G., Jentoft, F.C.: Improved experimental setup for in situ UV-Vis-NIR spectroscopy under catalytic conditions. Phys. Chem. Chem. Phys. 5, 4366–4370 (2003)

    CAS  Google Scholar 

  32. Vogt, C., Weckhuysen, B.M., Ruiz-Martinez, J.: Effect of feedstock and catalyst impurities on the methanol-to-olefin reaction over H-SAPO-34. ChemCatChem. 9, 183–194 (2017)

    CAS  Google Scholar 

  33. Weckhuysen, B.M., Baetens, D., Schoonheydt, R.A.: Spectroscopy of the formation of microporous transition metal ion containing aluminophosphates under hydrothermal conditions. Angew. Chem. Int. Ed. 39, 3419–3422 (2000)

    CAS  Google Scholar 

  34. Puurunen, R.L., Beheydt, B.G., Weckhuysen, B.M.: Monitoring chromia/alumina catalysts in-situ during propane dehydrogenation by optical fiber UV-visible diffuse reflectance spectroscopy. J. Catal. 204, 253–257 (2001)

    CAS  Google Scholar 

  35. Sattler, J.J.H.B., et al.: Operando UV-Vis spectroscopy of a catalytic solid in a pilot-scale reactor: deactivation of a CrOx/Al2O3 propane dehydrogenation catalyst. Chem. Commun. 49, 1518–1520 (2013)

    CAS  Google Scholar 

  36. Sattler, J.J.H.B., Mens, A.M., Weckhuysen, B.M.: Real-time quantitative operando Raman spectroscopy of a CrOx/Al2O3 propane dehydrogenation catalyst in a pilot-scale reactor. ChemCatChem. 6, 3139–3145 (2014)

    CAS  Google Scholar 

  37. (a) Mores, D., Stavitski, E., Kox, M.H.F., Kornatowski, J., Olsbye, U., Weckhuysen, B.M.: Space- and time-resolved in-situ spectroscopy on the coke formation in molecular sieves: methanol-to-olefin conversion over H-ZSM-5 and H-SAPO-34. Chem. Eur. J. 14, 11320–11327 (2008); (b) Mores, D., Kornatowski, J., Olsbye, U., Weckhuysen, B.M.: Coke formation during het methanol-to-olefin conversion: in situ micro-spectroscopy on individual H-ZSM-5 crystals with different Brønsted acidity. Chem. Eur. J. 17, 2874–2884 (2011)

    Google Scholar 

  38. (a) Niemantsverdriet, J.W.: Spectroscopy in Catalysis, An Introduction, 3rd edn. Wiley-VCH, Weinheim (2007); (b) Che, M., Védrine, J.C. (eds.): Characterization of Solid Materials and Heterogeneous Catalysts: From Structure to Surface Reactivity, 1st edn. Wiley-VCH, Weinheim (2012)

    Google Scholar 

  39. (a) Velthoen, M.E.Z., Nab, S., Weckhuysen, B.M.: Probing acid sites in solid catalysts with pyridine UV-Vis spectroscopy. Phys. Chem. Chem. Phys. 20, 21647–21659 (2018); (b) Lari, G.M., Nowicka, E., Morgan, D.J., Kondrat, S.A., Hutchings, G.J.: The use of carbon monoxide as a probe molecule in spectroscopic studies fro determination of exposed gold sites on TiO2. Phys. Chem. Chem. Phys. 17, 23236–23244 (2015); (c) Stawicka, K., Prukala, D., Siodla, T., Sikorski, M., Ziolek, M.: UV-Vis spectroscopy combined with azastilbene probe as a tool for testing basicity of mesoporous silica modified with nitrogen compounds. Appl. Catal. A General. 570, 339–347 (2019)

    Google Scholar 

  40. (a) Bentrup, U.: Combining in situ characterization methods in one setup: looking with more eyes into the intricate chemistry of the synthesis and working of heterogeneous catalysts. Chem. Soc. Rev. 39, 4718–4730 (2010); (b) Tinnemans, S.J., Mesu, J.G., Kervinen, K., Visser, T., Nijhuis, T.A., Beale, A.M., Keller, D.E., van der Eerden, A.M.J., Weckhuysen, B.M.: Combining operando techniques in one spectroscopic-reaction cell: new opportunities for elucidating the active site and related reaction mechanism in catalysis. Catal. Today. 113, 3–15 (2006)

    Google Scholar 

  41. Groothaert, M.H., Smeets, P.J., Sels, B.F., Jacobs, P.A., Schoonheydt, R.A.: Selective oxidation of methane by the bis(μ-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites. J. Am. Chem. Soc. 127, 1394–1395 (2005)

    CAS  Google Scholar 

  42. (a) Woertink, J.S., et al.: A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol. Proc. Natl. Acad. Sci. 106, 18908–18913 (2009); (b) Brezicki, G., Kammert, J.D., Gunnoe, B., Paolucci, C., Davis, R.J.: Insights into the speciation of Cu in the Cu-H-mordenite catalyst for the oxidation of methanol to methanol. ACS Catal. 9, 5308–5319 (2019); (c) Grundner, S., Markovits, M.A.C., Li, G., Tromp, M., Pidko, E.A., Hensen, E.J.M., Jentys, A., Sanchez-Sanchez, M., Lercher, J.A.: Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nat. Commun. 6, 7546 (2015)

    Google Scholar 

  43. Snyder, B.E.R., Bols, M.L., Schoonheydt, R.A., Sels, B.F., Solomon, E.I.: Iron and copper active sites in zeolites and their correlation to metalloenzymes. Chem. Rev. 118, 2718–2768 (2018)

    CAS  Google Scholar 

  44. (a) Nijhuis, T.A., Tinnemans, S.J., Visser, T., Weckhuysen, B.M.: Towards real-time spectroscopic process control for the dehydrogenation of propane over supported chromium oxide catalysts. Chem. Eng. Sci. 59, 5487–5492 (2004); (b) Tinnemans, S.J., Kox, M.H.F., Nijhuis, T.A., Visser, T., Weckhuysen, B.M.: Real time quantitative Raman spectroscopy of supported metal oxide catalysts without the need for an internal standard. Phys. Chem. Chem. Phys. 7, 211–216 (2005)

    Google Scholar 

  45. Beale, A.M., van Der Eerden, A.M.J., Kervinen, K., Newton, M.A., Weckhuysen, B.M.: Adding a third dimension to operando spectroscopy: a combined UV-Vis, Raman and XAFS setup to study heterogeneous catalysts under working conditions. Chem. Commun., (24), 3015–3017 (2005)

    Google Scholar 

  46. (a) Rabeah, J., Bentrup, U., Stößer, R., Brückner, A.: Selective alcohol oxidation by a copper TEMPO catalyst: mechanistic insights by simultaneously coupled operando EPR/UV-Vis/ATR-IR spectroscopy. Angew. Chem. Int. Ed. 54, 11791–11794 (2015); (b) Rabeah, J., Briois, V., Adomeit, S., La Fontaine, C., Bentrup, U., Brückner, A.: Multivariate analysis of coupled operando EPR/XANES/EXAFS/UV-Vis/ATR-IR spectroscopy: a new dimension for mechanistic studies of catalytic gas-liquid phase reactions. Chem. Eur. J. 26, 7395–7404 (2020)

    Google Scholar 

  47. Chakrabarti, A., Gierada, M., Handzlik, J., Wachs, I.E.: Operando molecular spectroscopy during ethylene polymerization by supported CrOx/SiO2 catalysts: active sites, reaction intermediates, and structure-activity relationship. Top. Catal. 59, 725–739 (2016)

    CAS  Google Scholar 

  48. (a) Zhang, B., Wachs, I.E.: Identifying the catalytic active site for propylene metathesis by supported ReOx catalysts. ACS Catal. 11, 1962–1976 (2021); (b) Zhang, B., Lwin, S., Xiang, S., Frenkel, A.I., Wachs, I.E.: Tuning the number of active sites and turnover frequencies by surface modification of supported ReO4/(SiO2-Al2O3) catalysts for olefin metathesis. ACS Catal. 11, 2412–2421 (2021); (c) Lwin, S., Li, Y., Frenkel, A.I., Wachs, I.E.: Activation of surface ReOx sites on Al2O3 catalysts for olefin metathesis. ACS Catal. 5, 6807–6814 (2015)

    Google Scholar 

  49. Goetze, J., Yarulina, I., Gascon, J., Kapteijn, F., Weckhuysen, B.M.: Revealing lattice expansion of small-pore zeolite catalysts during the methanol-to-olefins process using combined operando X-ray diffraction and UV-vis spectroscopy. ACS Catal. 8, 2060–2070 (2018)

    CAS  Google Scholar 

  50. Velthoen, M.E.Z., Boereboom, J.M., Bulo, R.E., Weckhuysen, B.M.: Insights into the activation of silica-supported metallocene olefin polymerization catalysts by methylaluminoxane. Catal. Today. 334, 223–230 (2019)

    CAS  Google Scholar 

  51. Buurmans, I.L.C., Pidko, E., de Groot, J.M., Stavitksi, E., van Santen, R.A., Weckhuysen, B.M.: Styrene oligomerization as a molecular probe reaction for zeolite acidity: a UV-Vis spectroscopy and DFT study. Phys. Chem. Chem. Phys. 12, 7032–7040 (2010)

    CAS  Google Scholar 

  52. (a) Stavitski, E., Kox, M.H.F., Weckhuysen, B.M.: Revealing shape selectivity and catalytic activity trends within the pores of H-ZSM-5 crystals by time- and space-resolved optical and fluorescence microspectroscopy. Chem. Eur. J. 13, 7057–7065 (2007); (b) Stavitksi, E., Pidko, E.A., Kox, M.H.F., Hensen, E.J.M., van Santen, R.A., Weckhuysen, B.M.: Detection of carbocationic species in zeolites: large crystals pave the way. Chem. Eur. J. 16, 9340–9348 (2010)

    Google Scholar 

  53. Goetze, J., Meirer, F., Yarulina, I., Gascon, J., Kapteijn, F., Ruiz-Martinez, J., Weckhuysen, B.M.: Insights into the activity and deactivation of the methanol-to-olefins process over different small-pore zeolites as studied with operando UV-vis spectroscopy. ACS Catal. 7, 4033–4046 (2017)

    CAS  Google Scholar 

  54. Verkleij, S.P., Whiting, G.T., Esclapez, S.P., Mertens, M.M., Bons, A.J., Burgers, M., Weckhuysen, B.M.: Operando micro-spectroscopy on ZSM-5 containing extrudates during the oligomerization of 1-hexene. Catal. Sci. Technol. 8, 2175–2185 (2018)

    CAS  Google Scholar 

  55. Verkleij, S.P., Whiting, G.T., Pieper, D., Parres, E.S., Li, S.W., Mertens, M.M., Janssen, M., Bons, A.J., Burgers, M., Weckhuysen, B.M.: Chemical imaging of the binder-dependent coke formation in zeolite-based catalyst bodies during the transalkylation of aromatics. ChemCatChem. 11, 4788–4796 (2019)

    CAS  Google Scholar 

  56. Verkleij, S.P., Whiting, G.T., Parres, E.S., Li, S.W., Mertens, M.M., Janssen, M., Bons, A.J., Burgers, M., Weckhuysen, B.M.: High-pressure operando UV-vis micro-spectroscopy of coke formation in zeolite-based catalyst extrudates during the transalkylation of aromatics. ChemCatChem. 12, 5465–5475 (2020)

    CAS  Google Scholar 

  57. Goetze, J., Weckhuysen, B.M.: Spatiotemporal coke formation over zeolite ZSM-5 during the methanol-to-olefins process as studied with operando UV-Vis spectroscopy: a comparison between H-ZSM-5 and Mg-ZSM-5. Catal. Sci. Technol. 8, 1632–1644 (2018)

    CAS  Google Scholar 

  58. (a) Chowdhury, A.D., Houben, K., Whiting, G.T., Chung, S.H., Baldus, M., Weckhuysen, B.M.: Electrophilic aromatic substitution over zeolites generates Wheland-type reaction intermediates. Nat. Catal. 1, 23–31 (2018); (b) Bocus, M., Vanduyfhuys, L., De Proft, F., Weckhuysen, B.M., Van Speybroeck, V.: Mechanistic characterization of zeolite-catalyzed aromatic electrophilic substitution at realistic operating conditions. JACS Au. 2, 502–514 (2022)

    Google Scholar 

  59. (a) Hernandez, E.D., Jentoft, F.C.: Spectroscopic signatures reveal cyclopentenyl cation contributions in methanol-to-olefins catalysis. ACS Catal. 10, 5764–5782 (2020); (b) Wulfers, M. J., Jentoft, F. C., The role of cyclopentadienium ions in methanol-to-hydrocarbons chemistry. ACS Catal. 4, 3521–3532 (2014); (c) Srinivasan, P.D., Zhu, H., Bravo-Suárez, J.J.: In situ UV-Vis plasmon resonance spectroscopic assessment of oxygen and hydrogen adsorption location on supported gold catalysts. Mol. Catal. 507, 111572 (2021); (d) Ishida, R., Hayashi, S., Yamazoe, S., Kato, K., Tsukuda, T.: Hydrogen-mediated electron doping of gold clusters as revealed by in situ X-ray and UV-Vis absorption spectroscopy. J. Phys. Chem. Lett. 8, 2368–2372 (2017)

    Google Scholar 

  60. Grabow, K., Bentrup, U.: Homogeneous catalytic processes monitored by combined in situ ATR-IR, UV-Vis, and Raman spectroscopy. ACS Catal. 4, 2153–2164 (2014)

    CAS  Google Scholar 

  61. Tromp, M., van Strijdonck, G.P.F., van Berkel, S.S., van den Hoogenband, A., Feiters, M.C., de Bruin, B., Fiddy, S.G., van der Eerden, A.M.J., van Bokhoven, J.A., van Leeuwen, P.W.N.N., Koningsberger, D.C., van Koten, G.: Organometallics. 29, 3085–3097 (2010); (a) Tromp, M., Sietsma, J.R.A., van Bokhoven, J.A., van Strijdonck, G.P.F., van Haaren, R.J., van der Eerden, A.M.J., van Leeuwen, P.W.N.M., Koningsberger, D.C.: Chem. Commun. 128-129 (2003); (b) Bartlett, S.A., Wells, P.P., Nachtegaal, M., Dent, A.J., Cibin, G., Reid, G., Evans, J., Tromp, M.: J. Catal. 284, 247–258 (2011)

    Google Scholar 

  62. Grauke, R., et al.: Impact of Al activators on structure and catalytic performance of Cr catalysts in homogeneous ethylene oligomerization – a multitechnique in situ/operando study. ChemCatChem. 12, 1025–1035 (2019)

    Google Scholar 

  63. (a) Wijten, J.H.J., et al.: Electrolyte effects on the stability of Ni−Mo cathodes for the hydrogen evolution reaction. ChemSusChem. 12, 3491–3500 (2019); (b) Wijten, J.H.J., Mandemaker, L.D.B., van Eeden, T.C., Dubbeld, J.E., Weckhuysen, B.M.: In situ study on Ni–Mo stability in a water-splitting device: effect of catalyst substrate and electric potential. ChemSusChem. 13, 3172–3179 (2020)

    Google Scholar 

  64. Wahl, S., et al.: Operando diffuse reflectance UV-Vis spectroelectrochemistry for investigating oxygen evolution electrocatalysts. Catal. Sci. Technol. 10, 517–528 (2020)

    CAS  Google Scholar 

  65. Segerer, A., Nitschke, P., Gschwind, R.M.: Combined in situ illumination-NMR-UV/Vis spectroscopy: a new mechanistic tool in photochemistry. Angew. Chem. Int. Ed. 57, 7493–7497 (2018)

    Google Scholar 

  66. Valencia, S., Marín, J.M., Restrepo, G., Frimmel, F.H.: Application of excitation-emission fluorescence matrices and UV/Vis absorption to monitoring the photocatalytic degradation of commercial humic acid. Sci. Total Environ. 442, 207–214 (2013)

    CAS  Google Scholar 

  67. Vogt, C., Weckhuysen, B.M.: The concept of active sites in heterogeneous catalysis. Nat. Rev. Chem. 6, 89–111 (2022)

    Google Scholar 

Download references

Acknowledgments

This work is part of the Advanced Research Center for Chemical Building Blocks, ARC CBBC, which is co-founded and co-financed by the Netherlands Organisation for Scientific Research (NWO) and the Netherlands Ministry of Economic Affairs and Climate Policy. This work was supported by the Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC), an NWO Gravitation program funded by the Ministry of Education, Culture and Science of the government of the Netherlands, and the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 801359. The authors thank T. Hartman (Utrecht University) for the graphical illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bert M. Weckhuysen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vogt, C., Wondergem, C.S., Weckhuysen, B.M. (2023). Ultraviolet-Visible (UV-Vis) Spectroscopy. In: Wachs, I.E., Bañares, M.A. (eds) Springer Handbook of Advanced Catalyst Characterization. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-031-07125-6_11

Download citation

Publish with us

Policies and ethics