Skip to main content
Log in

Optimization of lipid extraction and analytical protocols for UHPLC-ESI-HRMS-based lipidomic analysis of adherent mammalian cancer cells

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Lipidomics, which reveals comprehensive characterization of molecular lipids, is a rapidly growing technology used in biomedical research. Lipid extraction is a critical step in lipidomic analysis. However, the effectiveness of different lipid extract solvent systems from cellular samples still remains unclear. In the current study, the protocol of reverse-phase liquid chromatography mass spectrometry (LC/MS)-based lipidomics was optimized for extraction and detection of lipids from human pancreatic cancer cell line PANC-1. Four different extraction methods were compared, including methanol/methyl-tert-butyl ether (MTBE)/H2O, methanol/chloroform, methanol/MTBE/chloroform, and hexane/isopropanol. Data were acquired using high-resolution mass spectrometry in positive and negative ion modes respectively. The number of total detected and identified lipids was assessed with the aid of automated lipid identification software LipidSearch. Results demonstrated that methanol/MTBE/H2O provided a better extraction efficiency for different lipid classes, which was chosen as the optimized extraction solvent system. This validated method enables highly sensitive and reproducible analysis for a variety of cellular lipids, which was further applied to an untargeted lipidomic study on human pancreatic cancer PANC-1 cell lines. Moreover, this optimized extraction solvent system can be further applied to other cancer cell lines with similar chemical and physical properties.

Optimized UHPLC-ESI-HRMS-based lipidomic analysis of cancer cells

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CE:

Cholesteryl ester

CER:

Ceramide

CL:

Cardiolipin

DG:

Diacylglycerols

FA:

Fatty acid

LPC:

Lysophosphatidylcholine

LPE:

Lysophosphatidylethanolamine

MTBE:

Methyl-tert-butyl ether

PA:

Phosphatidic acid

PC:

Phosphatidylcholine

PCA:

Principal component analysis

PE:

Phosphatidylethanolamine

PG:

Phosphatidylglycerol

PI:

Phosphatidylinositol

PS:

Phosphatidylserine

SM:

Sphingomyelin

TG:

Triacylglycerol

UHPLC-ESI-HRMS:

Ultra-high-performance liquid chromatography electrospray ionization high-resolution mass spectrometry

References

  1. Li M, Yang L, Bai Y, Liu H. Analytical methods in lipidomics and their applications. Anal Chem. 2014;86(1):161–75.

    Article  CAS  Google Scholar 

  2. Jaiswal M, Schinske A, Pop-Busui R. Lipids and lipid management in diabetes. Best Pract Res Clin Endocrinol Metab. 2014;28(3):325–38.

    Article  CAS  Google Scholar 

  3. Bradley-Whitman MA, Lovell MA. Biomarkers of lipid peroxidation in Alzheimer disease (AD): an update. Arch Toxicol. 2015;89(7):1035–44.

    Article  CAS  Google Scholar 

  4. Currie E, Schulze A, Zechner R, Walther TC, Farese RV Jr. Cellular fatty acid metabolism and cancer. Cell Metab. 2013;18(2):153–61.

    Article  CAS  Google Scholar 

  5. Han X, Gross RW. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J Lipid Res. 2003;44(6):1071–9.

    Article  CAS  Google Scholar 

  6. Sethi S, Brietzke E. Recent advances in lipidomics: analytical and clinical perspectives. Prostaglandins Other Lipid Mediat. 2017;128-129:8–16.

    Article  CAS  Google Scholar 

  7. Meikle PJ, Christopher MJ. Lipidomics is providing new insight into the metabolic syndrome and its sequelae. Curr Opin Lipidol. 2011;22(3):210–5.

    Article  CAS  Google Scholar 

  8. Pati S, Nie B, Arnold RD, Cummings BS. Extraction, chromatographic and mass spectrometric methods for lipid analysis. Biomed Chromatogr. 2016;30(5):695–709.

    Article  CAS  Google Scholar 

  9. Chen S, Hoene M, Li J, Li Y, Zhao X, Haring HU, et al. Simultaneous extraction of metabolome and lipidome with methyl tert-butyl ether from a single small tissue sample for ultra-high performance liquid chromatography/mass spectrometry. J Chromatogr A. 2013;1298:9–16.

    Article  CAS  Google Scholar 

  10. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226:497–509.

    CAS  Google Scholar 

  11. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–7.

    Article  CAS  Google Scholar 

  12. Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res. 2008;49(5):1137–46.

    Article  CAS  Google Scholar 

  13. Sandra K, Pereira Ados S, Vanhoenacker G, David F, Sandra P. Comprehensive blood plasma lipidomics by liquid chromatography/quadrupole time-of-flight mass spectrometry. J Chromatogr A. 2010;1217(25):4087–99.

    Article  CAS  Google Scholar 

  14. Lee DY, Kind T, Yoon YR, Fiehn O, Liu KH. Comparative evaluation of extraction methods for simultaneous mass-spectrometric analysis of complex lipids and primary metabolites from human blood plasma. Anal Bioanal Chem. 2014;406(28):7275–86.

    Article  CAS  Google Scholar 

  15. Sarafian MH, Gaudin M, Lewis MR, Martin FP, Holmes E, Nicholson JK, et al. Objective set of criteria for optimization of sample preparation procedures for ultra-high throughput untargeted blood plasma lipid profiling by ultra performance liquid chromatography-mass spectrometry. Anal Chem. 2014;86(12):5766–74.

    Article  CAS  Google Scholar 

  16. Narvaez-Rivas M, Zhang Q. Comprehensive untargeted lipidomic analysis using core-shell C30 particle column and high field orbitrap mass spectrometer. J Chromatogr A. 2016;1440:123–34.

    Article  CAS  Google Scholar 

  17. Bi H, Krausz KW, Manna SK, Li F, Johnson CH, Gonzalez FJ. Optimization of harvesting, extraction, and analytical protocols for UPLC-ESI-MS-based metabolomic analysis of adherent mammalian cancer cells. Anal Bioanal Chem. 2013;405(15):5279–89.

    Article  CAS  Google Scholar 

  18. Yu T, Wang Y, Zhang H, Johnson CH, Jiang Y, Li X, et al. Metabolomics reveals mycoplasma contamination interferes with the metabolism of PANC-1 cells. Anal Bioanal Chem. 2016;408(16):4267–73.

    Article  CAS  Google Scholar 

  19. Witting M, Maier TV, Garvis S, Schmitt-Kopplin P. Optimizing a ultrahigh pressure liquid chromatography-time of flight-mass spectrometry approach using a novel sub-2mum core-shell particle for in depth lipidomic profiling of Caenorhabditis elegans. J Chromatogr A. 2014;1359:91–9.

    Article  CAS  Google Scholar 

  20. Bird SS, Marur VR, Sniatynski MJ, Greenberg HK, Kristal BS. Lipidomics profiling by high-resolution LC-MS and high-energy collisional dissociation fragmentation: focus on characterization of mitochondrial cardiolipins and monolysocardiolipins. Anal Chem. 2011;83(3):940–9.

    Article  CAS  Google Scholar 

  21. Hu C, van Dommelen J, van der Heijden R, Spijksma G, Reijmers TH, Wang M, et al. RPLC-ion-trap-FTMS method for lipid profiling of plasma: method validation and application to p53 mutant mouse model. J Proteome Res. 2008;7(11):4982–91.

    Article  CAS  Google Scholar 

  22. Yamada T, Uchikata T, Sakamoto S, Yokoi Y, Fukusaki E, Bamba T. Development of a lipid profiling system using reverse-phase liquid chromatography coupled to high-resolution mass spectrometry with rapid polarity switching and an automated lipid identification software. J Chromatogr A. 2013;1292:211–8.

    Article  CAS  Google Scholar 

  23. Cajka T, Fiehn O. Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. Trends Anal Chem. 2014;61:192–206.

    Article  CAS  Google Scholar 

  24. Slawik M, Vidal-Puig AJ. Lipotoxicity, overnutrition and energy metabolism in aging. Ageing Res Rev. 2006;5(2):144–64.

    Article  CAS  Google Scholar 

  25. Tomasz B, Tadeusz P, Renata ZT. Energy excess is the main cause of accelerated aging of mammals. Oncotarget. 2015;15:12909–19.

    Google Scholar 

  26. Brugger B. Lipidomics: analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry. Annu Rev Biochem. 2014;83:79–98.

    Article  Google Scholar 

  27. Pellegrino RM, Di Veroli A, Valeri A, Goracci L, Cruciani G. LC/MS lipid profiling from human serum: a new method for global lipid extraction. Anal Bioanal Chem. 2014;406(30):7937–48.

    Article  CAS  Google Scholar 

  28. Lofgren L, Stahlman M, Forsberg GB, Saarinen S, Nilsson R, Hansson GI. The BUME method: a novel automated chloroform-free 96-well total lipid extraction method for blood plasma. J Lipid Res. 2012;53(8):1690–700.

    Article  Google Scholar 

  29. Reis A, Rudnitskaya A, Blackburn GJ, Mohd Fauzi N, Pitt AR, Spickett CM. A comparison of five lipid extraction solvent systems for lipidomic studies of human LDL. J Lipid Res. 2013;54(7):1812–24.

    Article  CAS  Google Scholar 

  30. Patterson RE, Ducrocq AJ, McDougall DJ, Garrett TJ, Yost RA. Comparison of blood plasma sample preparation methods for combined LC-MS lipidomics and metabolomics. J Chromatogr B Anal Technol Biomed Life Sci. 2015;1002:260–6.

    Article  CAS  Google Scholar 

  31. Wenk MR. Lipidomics: new tools and applications. Cell. 2010;143(6):888–95.

    Article  CAS  Google Scholar 

  32. Campisi J. Aging, cellular senescence, and cancer. Annu Rev Physiol. 2013;75:685–705.

    Article  CAS  Google Scholar 

  33. Mielke MM, Bandaru VV, Han D, An Y, Resnick SM, Ferrucci L, et al. Factors affecting longitudinal trajectories of plasma sphingomyelins: the Baltimore longitudinal study of aging. Aging Cell. 2015;14(1):112–21.

    Article  CAS  Google Scholar 

  34. Steelman LS, Chappell WH, Abrams SL, Kempf RC, Long J, Laidler P, et al. Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging (Albany NY). 2011;3(3):192–222.

    Article  CAS  Google Scholar 

  35. Freikman I, Fibach E. Distribution and shedding of the membrane phosphatidylserine during maturation and aging of erythroid cells. Biochim Biophys Acta. 2011;1808(12):2773–80.

    Article  CAS  Google Scholar 

  36. Lizardo DY, Lin YL, Gokcumen O, Atilla-Gokcumen GE. Regulation of lipids is central to replicative senescence. Mol BioSyst. 2017;13(3):498–509.

    Article  CAS  Google Scholar 

  37. Maeda M, Scaglia N, Igal RA. Regulation of fatty acid synthesis and Delta9-desaturation in senescence of human fibroblasts. Life Sci. 2009;84(3–4):119–24.

    Article  CAS  Google Scholar 

  38. Schrauwen P, Schrauwen-Hinderling V, Hoeks J, Hesselink MK. Mitochondrial dysfunction and lipotoxicity. Biochim Biophys Acta. 2010;1801(3):266–71.

    Article  CAS  Google Scholar 

  39. Muoio DM, Neufer PD. Lipid-induced mitochondrial stress and insulin action in muscle. Cell Metab. 2012;15(5):595–605.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Natural Science Foundation of China (Grants: 81522047, 81573489, 81373470, 81320108027), the 111 project (Grant: B16047), the Key Laboratory Foundation of Guangdong Province (Grant: 2011A060901014), the Natural Science Foundation of Guangdong (Grant: 2015A030313124), and the Guangzhou Health Care Collaborative Innovation Program (Grant: 201508020250).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huichang Bi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

ESM 1

(PDF 239 kb).

ESM 2

(PDF 1491 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Gao, Y., Sun, J. et al. Optimization of lipid extraction and analytical protocols for UHPLC-ESI-HRMS-based lipidomic analysis of adherent mammalian cancer cells. Anal Bioanal Chem 409, 5349–5358 (2017). https://doi.org/10.1007/s00216-017-0483-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0483-7

Keywords

Navigation