Skip to main content
Log in

Engineering the metal sensitive sites in Macrolampis sp2 firefly luciferase and use as a novel bioluminescent ratiometric biosensor for heavy metals

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Most luminescent biosensors for heavy metals are fluorescent and rely on intensity measurements, whereas a few are ratiometric and rely on spectral changes. Bioluminescent biosensors for heavy metals are less common. Firefly luciferases have been coupled to responsive promoters for mercury and arsenium, and used as light on biosensors. Firefly luciferase bioluminescence spectrum is naturally sensitive to heavy metal cations such as zinc and mercury and to pH. Although pH sensitivity of firefly luciferases was shown to be useful for ratiometric estimation of intracellular pH, its potential use for ratiometric estimation of heavy metals was never considered. Using the yellow-emitting Macrolampis sp2 firefly luciferase and site-directed mutagenesis, we show that the residues H310 and E354 constitute two critical sites for metal sensitivity that can be engineered to increase sensitivity to zinc, nickel, and mercury. A linear relationship between cation concentration and the ratio of bioluminescence intensities at 550 and 610 nm allowed, for the first time, the ratiometric estimation of heavy metals concentrations down to 0.10 mM, demonstrating the potential applicability of firefly luciferases as enzymatic and intracellular ratiometric metal biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Mac-H310A:

Macrolampis sp2 firefly luciferase with substitution of histidine to alanine on residue 310

Mac-H310C:

Macrolampis sp2 firefly luciferase with substitution of histidine to cysteine on residue 310

Mac-H310C/N354C:

Macrolampis sp2 firefly luciferase with substitution of histidine to cysteine on residue 310 and asparagine to cysteine on residue 354.

Mac-N354C:

Macrolampis sp2 firefly luciferase with substitution of asparagine to cysteine on residue 354

Mac-N354E:

Macrolampis sp2 firefly luciferase with substitution of asparagine to glutamic acid on residue 354

Mac-N354H:

Macrolampis sp2 firefly luciferase with substitution of asparagine to histidine on residue 354

pMac:

Macrolampis sp2 firefly luciferase

References

  1. Hastings JW. Biological diversity, chemical mechanisms and evolutionary origins of bioluminescent systems. J Mol Evol. 1983;19:309–21.

    Article  CAS  Google Scholar 

  2. Nakajima Y, Ykeda M, Kimura T, Honma S, Ohmiya Y, Honma K. Biodirectional role of orphan nuclear receptor RORα in clock gene transcriptions demonstrated by a novel reporter assay system. FEBS Lett. 2004;565:122–6.

    Article  CAS  Google Scholar 

  3. Nakajima Y, Yamazaki T, Nishii S, Noguchi T, Hoshino H, Niwa K, et al. Enhanced beetle luciferase for high-resolution bioluminescence imaging. PLoS One. 2010;5:100–11.

    Google Scholar 

  4. Viviani VR, Ohmiya Y. Beetle luciferases: colorful lights on biological processes and diseases. In: Daunert S, Deo SK, editors. Photoproteins in bioanalysis. Weinheim: Wiley; 2006. p. 49–63.

    Chapter  Google Scholar 

  5. Roda A, Mezzanotte L, Aldini R, Michelini E, Cevenini L. A new gastric-emptying mouse model based on in vivo non-invasive bioluminescence imaging. Neurogastroenterol Motil. 2010;22:1117–e288.

    Article  CAS  Google Scholar 

  6. Gabriel GVM, Lopes PS, Viviani VR. Suitability of Macrolampis firefly and Pyrearinus click beetle luciferases for bacterial light off toxicity biosensor. Anal Biochem. 2014;445:72–8.

    Article  Google Scholar 

  7. Mirasoli M, Michelini E. Analytical bioluminescence and chemiluminescence. Anal Bioanal Chem. 2014;406:5529–30.

    Article  CAS  Google Scholar 

  8. Tauriainen S, Karp M, Chang W, Virta M. Recombinant luminescent bacteria for measuring bioavailable arsenite and antimonite. Appl Environ Microbiol. 1997;63:4456–61.

    CAS  Google Scholar 

  9. Tauriainen S, Karp M, Chang W, Virta M. Luminescent bacterial sensor for cadmium and lead. Biosens Bioelectron. 1998;13:931–8.

    Article  CAS  Google Scholar 

  10. Tavares TM, Carvalho FM. Avaliação de exposição de populações humanas a metais pesados no ambiente: exemplos do Recôncavo Baiano. Quím Nova. 1992;15:147–54.

    CAS  Google Scholar 

  11. Yabe MJS, Oliveira E. Metais pesados em águas superficiais como estratégia de caracterização de bacias hidrográficas. Quím Nova. 1998;21:551–6.

    Article  CAS  Google Scholar 

  12. Ferreira AP, Horta MAP, Cunha CLN. Avaliação das concentrações de metais pesados no sedimento, na água e nos órgãos de Nycticorax nycticorax (Garça-da-noite) na Baía de Sepetiba, RJ, Brasil. Rev Gestão Cost Int. 2010;10:229–41.

    Article  Google Scholar 

  13. Tauriainen SM, Virta MPJ, Karp MT. Detecting bioavailable toxic metals and metalloids from natural water samples using luminescent sensor bacteria. Water Res. 2000;34:2661–6.

    Article  CAS  Google Scholar 

  14. Ivask A, Virta M, Kahru A. Construction and use of specific luminescent recombinant bacterial sensors for the assessment of bioavailable fraction of cadmium, zinc, mercury and chromium in the soil. Soil Biol Biochem. 2002;34:1439–47.

    Article  CAS  Google Scholar 

  15. Ivask A, Francois M, Kahru A, Dubourguier H, Virta M, Douay F. Recombinant luminescent bacterial sensors for the measurement of bioavailability of cadmium and lead in soils polluted by metal smelters. Chemosphere. 2004;55:147–56.

    Article  CAS  Google Scholar 

  16. Seliger HH, McElroy WD. The colors of firefly bioluminescence: enzyme configuration and species specificity. Proc Natl Acad Sci U S A. 1964;52:75–81.

    Article  CAS  Google Scholar 

  17. Viviani VR, Bechara EJH. Bioluminescence of Brazilian fireflies (Coleoptera: Lampyridae): spectral distribution and pH effect on luciferase-elicited colors. Comparison with elaterid and phengodid luciferases. Photochem Photobiol. 1995;62:490–5.

    Article  CAS  Google Scholar 

  18. Nakatsu T, Ichiyama S, Hiratake J, Saldanha A, Kobashi N, Sakata K, et al. Structural basis for the spectral difference in luciferase bioluminescence. Nature. 2006;440:372–6.

    Article  CAS  Google Scholar 

  19. Viviani VR, Silva-Neto AJ, Arnoldi FGC, Barbosa JARG, Ohmiya Y. The influence of the loop between residues 223-235 in beetle luciferase bioluminescence spectra: a solvent gate for the active site of pH-sensitive luciferases. Photochem Photobiol. 2008;84:138–44.

    CAS  Google Scholar 

  20. Viviani VR, Amaral D, Prado R, Arnoldi FGC. A new blue-shifted luciferase from the Brazilian Amydetes fanestratus (Coleoptera: Lampyridae) firefly: molecular evolution and structural/functional properties. Photochem Photobiol Sci. 2011;10:1879–86.

    Article  CAS  Google Scholar 

  21. Hirano T, Nagai H, Matsuhashi T, Hasumi Y, Iwano S, Ito K, et al. Spectroscopic studies of the color modulation mechanism of firefly (beetle) bioluminescence with amino-analogs of luciferin and oxyluciferin. Photochem Photobiol Sci. 2012;11:1281–4.

    Article  CAS  Google Scholar 

  22. Gabriel GVM, Viviani VR. Novel application of pH-sensitive firefly luciferases as dual reporter genes for simultaneous ratiometric analysis of intracellular pH and gene expression/location. Photochem Photobiol Sci. 2014;13:1661–70.

    Article  CAS  Google Scholar 

  23. Viviani VR, Oehlmeyer TL, Arnoldi FG, Brochetto-Braga MR. A new firefly luciferase with bimodal spectrum: identification of structural determinants in spectral pH-sensitivity in firefly luciferases. Photochem Photobiol. 2005;81:843–8.

    Article  CAS  Google Scholar 

  24. Chen G, Guo Z, Zeng G, Tang L. Fluorescent and colorimetric sensors for environmental mercury detection. Analyst. 2015;140:5400–43.

    Article  CAS  Google Scholar 

  25. Kim HN, Ren WX, Kim JS, Yoon J. Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem Soc Rev. 2012;41:3210–44.

    Article  CAS  Google Scholar 

  26. Hessels AM, Merkx M. Genetically-encoded FRET-based sensors for monitoring Zn2+ in living cells. Metallomics. 2015;7:258–66.

    Article  CAS  Google Scholar 

  27. Liu H, Venkatesan P, Wu S. A sensitive and selective fluorescent sensor for zinc(II) and its application to living cell imaging. Sens Actuators B. 2014;203:719–25.

    Article  CAS  Google Scholar 

  28. Hosseini M, Ghafarloo A, Ganjali MR, Faridbod F, Norouzi P, Niasari MS. A turn-on fluorescent sensor for Zn2+ based on new Schiff's base derivative in aqueous media. Sens Actuators B. 2014;198:411–5.

    Article  CAS  Google Scholar 

  29. Tang L, Dai X, Zhong K, Wen X, Wu D. A Phenylbenzothiazole derived fluorescent sensor for Zn(II) recognition in aqueous solution through “turn-on” excited-state intramolecular proton transfer emission. J Fluoresc. 2014;24:1487–93.

    Article  CAS  Google Scholar 

  30. Song EJ, Parka GJ, Lee JJ, Lee S, Noh I, Kim Y, et al. A fluorescence sensor for Zn2+ that also acts as a visible sensor for Co2+ and Cu2+. Sens Actuators B. 2015;213:268–75.

    Article  CAS  Google Scholar 

  31. Aydin Z, Wei Y, Guo M. An “off–on” optical sensor for mercury ion detection in aqueous solution and living cells. Inorg Chem Comm. 2014;50:84–7.

    Article  CAS  Google Scholar 

  32. Han A, Liu X, Prestwich GD, Zang L. Fluorescent sensor for Hg2+ detection in aqueous solution. Sens Actuators B. 2014;198:274–7.

    Article  CAS  Google Scholar 

  33. Erdemir S, Kocyigit O, Malkondu S. Detection of Hg2+ ion in aqueous media by new fluorometric and colorimetric sensor based on triazole-rhodamine. J Photochem Photobiol A Chem. 2015;309:15–21.

    Article  CAS  Google Scholar 

  34. Maity SB, Banerjee S, Sunwoo K, Kim JS, Bharadwaj PK. A Fluorescent chemosensor for Hg2+ and Cd2+ ions in aqueous medium under physiological pH and its applications in imaging living cells. Inorg Chem. 2015;54:3929–36.

    Article  Google Scholar 

  35. Song T, Zhu X, Zhou S, Yang G, Gan W, Yuan Q. DNA derived fluorescent bio-dots for sensitive detection of mercury and silver ions in aqueous solution. Appl Surf Sci. 2015;347:505–13.

    Article  CAS  Google Scholar 

  36. Wu B, Xu L, Wang S, Wan Y, Zhang W. A PEGylated colorimetric and turn-on fluorescent sensor based on BODIPY for Hg(II) detection in water. Polym Chem. 2015;6:4279–89.

    Article  CAS  Google Scholar 

  37. Xu H, Zhan S, Zhang D, Xia B, Zhan X, Wang L, et al. Label-free fluorescent sensor for detection of Pb2+ and Hg2+. Anal Methods. 2015;7:6260–5.

    Article  CAS  Google Scholar 

  38. Wu L, Wang Z, Zhao S, Meng X, Song X, Feng J, et al. A metal-organic framework/DNA hybrid system as a novel fluorescent biosensor for mercury(II) ion detection. Chem Eur J. 2016;22:477–80.

    Article  CAS  Google Scholar 

  39. Zhang Y, Guo X, Tian X, Liu A, Jia L. Carboxamidoquinoline–coumarin derivative: a ratiometric fluorescent sensor for Cu(II) in a dual fluorophore hybrid. Sens Actuators B. 2015;218:37–41.

    Article  CAS  Google Scholar 

  40. Tian X, Guo X, Jia L, Yang R, Cao G, Liu C. A fluorescent sensor based on bicarboxamidoquinoline for highly selective relay recognition of Zn2+ and citrate with ratiometric response. Sens Actuators B. 2015;221:923–9.

    Article  CAS  Google Scholar 

  41. Xu W, Ren C, Teoh CL, Peng J, Gadre SH, Rhee H, et al. An artificial tongue fluorescent sensor array for identification and quantitation of various heavy metal ions. Anal Chem. 2014;86:8763–9.

    Article  CAS  Google Scholar 

  42. Xu X, Oliff K, Xu T, Ripp S, Sayler, Zhuang J. Microbial availability of mercury: effective detection and organic ligand effect using a whole-cell bioluminescent bioreporter. Ecotoxicology. 2015;24:2200–6.

    Article  CAS  Google Scholar 

  43. Selifonova O, Burlage R, Barkay T. Bioluminescent sensors for detection of bioavailable Hg(II) in the environment. Appl Environ Microbiol. 1993;59:3083–90.

    CAS  Google Scholar 

  44. Hattori M, Haga S, Takakura H, Ozaki M, Ozawa T. Sustained accurate recording of intracellular acidification in living tissues with a photo-controllable bioluminescent protein. PNAS. 2013;110:9332–7.

    Article  CAS  Google Scholar 

  45. Maret W. Analyzing free zinc(II) ion concentrations in cell biology with fluorescent chelating molecules. Metallomics. 2015;7:202–11.

    Article  CAS  Google Scholar 

  46. Howard W, Leonard B, Moody W, Kochhar TS. Induction of chromosome changes by metal compounds in cultured CHO cells. Toxicol Lett. 1991;56:179–86.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank São Paulo Research Foundation (FAPESP) (grant #2011/23961-0; #2013/09594-0 and #2014/04477-9) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) 477616/2012-0 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim R. Viviani.

Ethics declarations

Conflict of interest

A patent (Brazilian patent PI0604475-1 A2, 2006) using Macrolampis sp2 firefly luciferase spectral sensitivity to detect metal has been applied for. No other conflict of interest is found.

Additional information

Published in the topical collection Highlights of Analytical Chemical Luminescence with guest editors Aldo Roda Hua Cui, and Chao Lu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.35 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabriel, G.V.M., Viviani, V.R. Engineering the metal sensitive sites in Macrolampis sp2 firefly luciferase and use as a novel bioluminescent ratiometric biosensor for heavy metals. Anal Bioanal Chem 408, 8881–8893 (2016). https://doi.org/10.1007/s00216-016-0011-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-0011-1

Keywords

Navigation