Skip to main content
Log in

A highly efficient, thermostable and cadmium selective firefly luciferase suitable for ratiometric metal and pH biosensing and for sensitive ATP assays

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Firefly luciferases have been widely used for bioanalytical purposes during the last 5 decades. They usually emit yellow-green bioluminescence and are pH-sensitive, displaying a color change to red at acidic pH and higher temperature and in the presence of heavy metals. Besides the usual applications as bioanalytical reagents and as reporter genes, firefly luciferases’ pH- and metal-sensitivities have been recently harnessed for intracellular metal and pH biosensing. Previously we cloned the luciferase of the Brazilian Amydetes vivianii firefly which displays the most blue-shifted color among known firefly luciferases. Here we purified it, characterized and investigated the kinetic properties and the pH, metal and thermal sensitivities of this firefly luciferase. This luciferase displays the lowest reported KM for ATP, the highest catalytic efficiencies, and the highest thermostability among the studied recombinant beetle luciferases, making this enzyme and its cDNA an ideal reagent for sensitive ATP assays and reporter gene. The blueshifted spectrum, higher thermostability, lower pH- and thermal-sensitivities and protein fluorescence studies indicate a more rigid active site during light emission. This enzyme displays an unmatched selective spectral sensitivity for cadmium and mercury, making it a promising ratiometric indicator of such toxic metals. Finally, the weaker thermal-sensitivity compared to other firefly luciferases makes this enzyme a better ratiometric pH indicator at temperatures above 30 °C, suitable for mammalian cell assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LH2:

D-Luciferin

ATP:

Adenosine triphosphate

References

  1. K. V. Wood, The chemical mechanism and evolutionary development of beetle bioluminescence, Photochem. Photobiol. Sci., 1995, 62, 662–673.

    Article  CAS  Google Scholar 

  2. V. R. Viviani, The origin, diversity and structure function relationships of insect luciferases, Cell. Mol. Life Sci., 2002, 59, 1833–1850.

    Article  CAS  PubMed  Google Scholar 

  3. Y. Ando, K. Niwa, N. Yamada, T. Enomoto, T. Irie, H. Kubota, Y. Ohmiya and H. Akiyama, Firefly bioluminescence quantum yield and colour change by pH-sensitive green emission, Nat. Photonics, 2008, 2, 44–47.

    Article  CAS  Google Scholar 

  4. H. H. Seliger and W. D. McElroy, The colors of firefly bioluminescence: Enzyme configuration and species specificity, Proc. Natl. Acad. Sci. U. S. A., 1964, 52, 75–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. V. R. Viviani and E. J. H. Bechara, Bioluminescence of Brazilian fireflies (Coleoptera: Lampyridae): spectral distribution and pH effect on luciferase-elicited colors. Comparison with elaterid and phengodid luciferases, Photochem. Photobiol. Sci., 1995, 62, 490–495.

    Article  CAS  Google Scholar 

  6. A. Roda, P. Pasini, M. Mirasole, E. Michelini and M. Guardigli, Biotechnological application of bioluminescence and chemiluminescence, Trends Biotechnol., 2004, 22, 295–303.

    Article  CAS  PubMed  Google Scholar 

  7. V. R. Viviani and Y. Ohmiya, Beetle luciferases: Colorful lights on biological processes and diseases of referencing, in Photoproteins in Bioanalysis, ed. S. Daunert and S. K. Deo, Wiley, New York, 2006, pp. 49–60.

  8. G. V. Gabriel and V. R. Viviani, Novel application of pH-sensitive firefly luciferases as dual reporter genes for simultaneous ratiometric analysis of intracellular pH and gene expression/location, Photochem. Photobiol. Sci., 2014, 13, 1661–1670.

    Article  CAS  PubMed  Google Scholar 

  9. G. V. Gabriel and V. R. Viviani, Engineering the metal sensitive sites in Macrolampis sp2 firefly luciferase and use as a novel bioluminescent ratiometric biosensor for heavy metals, Anal. Bioanal. Chem., 2016, 408, 8881–8893.

    Article  CAS  PubMed  Google Scholar 

  10. W. Yang, H. Kubota, N. Yamada, T. Irie and H. Akiyama, Quantum Yields and Quantitative Spectra of Firefly Bioluminescence with Various Bivalent Metal Ions, Photochem. Photobiol., 2011, 87, 846–852.

    Article  CAS  Google Scholar 

  11. J. R. De Wet, K. V. Wood, D. R. Helinsky and M. DeLuca, Cloning of firefly luciferase cDNA and expression of active luciferase in Escherichia coli, Proc. Natl. Acad. Sci. U. S. A., 1985, 82, 7870–7873.

    Article  PubMed  PubMed Central  Google Scholar 

  12. H. Tatsumi, T. Masuda, N. Kajiyama and E. Nakano, Luciferase cDNA from Japanese firefly Luciola cruciata: cloning, structure and expression in E. coli, J. Biolumin. Chemilumin., 1989, 3, 75–78.

    Article  CAS  PubMed  Google Scholar 

  13. H. Tatsumi, N. Kajiyama and E. Nakano, Molecular cloning and expression in E. coli of a cDNA enconding luciferase of a firefly Luciola lateralis, Biochim. Biophys. Acta, 1992, 1131, 161–165.

    Article  CAS  PubMed  Google Scholar 

  14. J. H. Devine, G. D. Kutuzova, V. A. Green, N. N. Ugarova and T. O. Baldwin, Luciferase from the East European firefly Luciola mingrelica: cloning and nucleotide sequence of cDNA, overexpression in E. coli and purification of the enzyme, Biochim. Biophys. Acta, 1993, 1173, 121–132.

    Article  CAS  PubMed  Google Scholar 

  15. Y. Ohmiya, N. Ohba, H. Toh and F. I. Tsuji, Cloning, expression and sequence analysis of cDNA for the Japanese fireflies, Pyrocoelia miyako and Hotaria parvula, Photochem. Photobiol. Sci., 1995, 62, 309–313.

    Article  CAS  Google Scholar 

  16. G. B. Sala-Newby, C. M. Thomson and A. K. Campbell, Sequence and biochemical similarities between the luciferases of the glow-worm Lampyris noctiluca and the firefly, Photinus pyralis, Biochem. J., 1996, 313, 761–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Y. Li, L. M. Buck, H. J. Scaeffer and F. R. Leach, Cloning and sequencing of a cDNA for the firefly luciferase from Photuris pennsilvanica, Biochim. Biophys. Acta, 1997, 1339, 39–52.

    Article  Google Scholar 

  18. V. R. Viviani, A. C. R. Silva, G. L. O. Perez, S. V. Santelli, E. J. H. Bechara and F. C. Reinach, Cloning and molecular characterization of the cDNA for the Brazilian larval Clickbeetle Pyrearinus termitilluminans luciferase, Photochem. Photobiol. Sci., 1999, 70, 254–260.

    Article  CAS  Google Scholar 

  19. V. R. Viviani, E. J. H. Bechara and Y. Ohmyia, Cloning, sequence analysis and expression of active Phrixothrix railroad-worms luciferases: relationship between bioluminescence spectra and primary structures, Biochem., 1999, 38, 8271–8279.

    Article  CAS  Google Scholar 

  20. V. R. Viviani, F. G. Arnoldi, M. Brochetto-Braga and Y. Ohmiya, Cloning and characterization of the cDNA for the Brazilian Cratomorphus distinctus larval firefly luciferase: similarities with European Lampyris noctiluca and Asiatic Pyrocoelia, luciferases, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2004, 139, 151–156.

    Article  CAS  Google Scholar 

  21. V. R. Viviani, T. L. Oehlmeyer, F. G. C. Arnoldi and M. R. Brochetto-Braga, A new firefly luciferase with bimodal spectrum: identification of structural determinants of spectral pH-sensitivity in firefly luciferases, Photochem. Photobiol. Sci., 2005, 81, 843–848.

    Article  CAS  Google Scholar 

  22. B. S. Alipour, S. Hosseinkhani, M. Nikkhah, H. Naderi-Manesh, M. J. Chaichi and S. K. Osaloo, Molecular cloning, sequence analysis, and expression of a cDNA encoding the luciferase from the glow-worm Lampyris turkestanicus, Biochem. Biophys. Res. Commun., 2004, 325, 215–222.

    Article  PubMed  CAS  Google Scholar 

  23. V. R. Viviani, D. T. Amaral, R. A. Prado and F. G. C. Arnoldi, A new blue-shifted luciferase from the Brazilian Amydetes fanestratus, (Coleoptera: Lampyridae) firefly: molecular evolution and structural/functional properties, Photochem. Photobiol. Sci., 2011, 10, 1879–1886.

    Article  CAS  PubMed  Google Scholar 

  24. E. Conti, N. P. Franks and P. Brick, Crystal structure of firefly luciferase throws light on a superfamily of adenylateforming enzymes, Structure, 1996, 4, 287–298.

    Article  CAS  PubMed  Google Scholar 

  25. N. P. Franks, A. Jenkins, E. Conti, W. R. Lieb and P. Brick, Strucutral basis for the inhibition of firefly luciferase by a general anesthetic, Biophys. J., 1998, 75, 2205–2211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. B. R. Branchini, J. C. Rosenberg, D. M. Fontaine, T. L. Southworth, C. E. Behney and L. Uzasci, Bioluminescence is produced from a trapped firefly luciferase conformation predicted by the domain alternation mechanism, J. Am. Chem. Soc., 2011, 133, 11088–11091.

    Article  CAS  PubMed  Google Scholar 

  27. T. Nakatsu, S. Ichiyama, J. Hiratake, A. Saldanha, N. Kobayashi, K. Sakata and H. Kato, Structural basis for the spectral difference in luciferase bioluminescence, Nature, 2006, 13, 372–376.

    Article  CAS  Google Scholar 

  28. M. Kheirabadi, Z. Sharafian, H. Naderi-Manesh, U. Heineman, U. Gohlke and S. Hosseinkhani, Crystal structure of native and a mutant of Lampyris turkestanicus luciferase implicate in bioluminescence color shift, Biochim. Biophys. Acta, Proteins Proteomics, 2013, 1834, 2729–2735.

    Article  CAS  Google Scholar 

  29. B. R. Branchini, R. A. Magyar, M. H. Murtiashaw, S. M. Anderson and M. Zimmer, Site-directed mutagenesis of Histidine 245 in firefly luciferase: a proposed model of the active site, Biochemistry, 1998, 37, 15311–15319.

    Article  CAS  PubMed  Google Scholar 

  30. T. P. Sandalova and N. N. Ugarova, Model of the active site of firefly luciferase, Biochemistry, 1999, 64, 962–967.

    CAS  PubMed  Google Scholar 

  31. B. R. Branchini, T. L. Southworth, M. H. Murtiashaw, H. Boije and S. E. Fleet, A mutagenesis study of the luciferin binding site residues of firefly luciferase, Biochem., 2003, 42, 10429–10436.

    Article  CAS  Google Scholar 

  32. V. R. Viviani, D. T. Amaral, D. R. Neves, A. Simões and F. G. C. Arnoldi, The luciferin binding site residues C/T311 (S314) influence the bioluminescence color of beetle luciferase through main-chain interaction with oxyluciferin phenolate, Biochem., 2013, 52, 19–27.

    Article  CAS  Google Scholar 

  33. N. Kajiyama and E. Nakano, Isolation and characterization of mutants of firefly luciferase which produce different colors of light, Protein Eng., 1991, 4, 691–693.

    Article  CAS  PubMed  Google Scholar 

  34. M. I. Koksharov and N. N. Ugarova, Thermostabilization of firefly luciferase by in vivo directed evolution, Protein Eng., Des. Sel., 2011, 24, 835–844.

    Article  CAS  Google Scholar 

  35. V. R. Viviani, A. J. Silva Neto, F. G. C. Arnoldi, J. A. Barbosa and Y. Ohmiya, The influence of the loop between residues 223–235 in beetle luciferases bioluminescence spectra: a solvent gate for the active site of pH-sensitive luciferases, Photochem. Photobiol. Sci., 2007, 84, 138–144.

    Google Scholar 

  36. V. R. Viviani, F. G. C. Arnoldi, A. J. S. Neto, T. L. Oehlmeyer, E. J. H. Bechara and Y. Ohmiya, The structural origin and biological function of pH-sensitivity in firefly luciferases, Photochem. Photobiol. Sci., 2008, 7, 159–169.

    Article  CAS  PubMed  Google Scholar 

  37. A. Moradi, S. Hosseinkhani, H. Naderi-Manesh, M. Sadeghizadeh and B. A. Alipour, Effect of charge distribution in a flexible loop on the bioluminescence color of fireflies luciferase, Biochem., 2009, 48, 575–582.

    Article  CAS  Google Scholar 

  38. P. J. White, D. J. Squirrell, P. Arnaud, C. R. Lowe and J. A. H. Murray, Improved thermostability of the North American firefly luciferase: saturation mutagenesis at position 354, Biochem. J., 1996, 319, 343–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. V. R. Viviani, A. Simões, V. R. Bevilaqua, G. V. M. Gabriel, F. G. C. Arnoldi and T. Hirano, Glu311 and Arg337 stabilize a closed conformation and provide a critical catalytic base and countercation for green bioluminescence in beetle luciferases, Biochemistry, 2016, 55, 1–8.

    Article  CAS  Google Scholar 

  40. V. R. Viviani, G. V. M. Gabriel, V. R. Bevilaqua, A. Simões, T. Hirano and P. S. L. Oliveira, The proton and metal binding sites responsible for the pH-dependent green-red bioluminescence color tuning in firefly luciferases, Sci. Rep., 2018, 8, 17594.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. C. Carrasco-López, J. C. Ferreira, N. M. Lui, S. Schramm, R. Berraud-Pache, I. Navizet, S. Panjikar, P. Naumov and W. M. Rabeh, Beetle luciferases with naturally red- and blue-shifted emission, Life Sci. Alliance, 2018, 1, 4.

    Article  Google Scholar 

  42. V. R. Viviani and Y. Ohmiya, Bovine serum albumin displays luciferase-like activity in presence of luciferyl-adenylate: insights on the origin of protoluciferase activity and bioluminescence colours, Luminescence, 2006, 21, 262–267.

    Article  CAS  PubMed  Google Scholar 

  43. V. R. Viviani, D. R. Neves, D. T. Amaral, R. A. Prado, T. Matsuhashi and T. Hirano, Bioluminescence of beetle luciferases with 6′-Amino-D-luciferin analogues reveals excited keto-oxyluciferin as the emitter and phenolate/luciferin binding site interactions modulate bioluminescence colors, Biochemistry, 2014, 53, 5208–5220.

    Article  CAS  PubMed  Google Scholar 

  44. G. Oliveira and V. R. Viviani, Comparison of the thermostability of recombinant luciferases from Brazilian bioluminescent beetles: Relationship with kinetics and bioluminescence colours, Luminescence, 2018, 33, 282–288.

    Article  CAS  PubMed  Google Scholar 

  45. G. Bertin and D. Averbeck, Cadmium: cellular effects, modification of biomoleculaes, modulation of DNA repair and genotoxic consequences (a review), Biochimie, 2006, 88, 1549–1559.

    Article  CAS  PubMed  Google Scholar 

  46. G. V. de Mello Gabriel, R. Yasuno, Y. Mitani, Y. Ohmiya and V. R. Viviani, Novel application of Macrolampis sp2 firefly luciferase for intracellular pH-biosensing in mammalian cells, Photochem. Photobiol. Sci., 2019, 18, 1212–1217.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Viviani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelentir, G.F., Bevilaqua, V.R. & Viviani, V.R. A highly efficient, thermostable and cadmium selective firefly luciferase suitable for ratiometric metal and pH biosensing and for sensitive ATP assays. Photochem Photobiol Sci 18, 2061–2070 (2019). https://doi.org/10.1039/c9pp00174c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00174c

Navigation