Skip to main content
Log in

Analysis of trace fibers by IR-MALDESI imaging coupled with high resolving power MS

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Trace evidence is a significant portion of forensic cases. Textile fibers are a common form of trace evidence that are gaining importance in criminal cases. Currently, qualitative techniques that do not yield structural information are primarily used for fiber analysis, but mass spectrometry is gaining an increasing role in this field. Mass spectrometry yields more quantitative structural information about the dye and polymer that can be used for more conclusive comparisons. Matrix-assisted laser desorption electrospray ionization (MALDESI) is a hybrid ambient ionization source being investigated for use in mass spectrometric fiber analysis. In this manuscript, IR-MALDESI was used as a source for mass spectrometry imaging (MSI) of a dyed nylon fiber cluster and single fiber. Information about the fiber polymer as well as the dye were obtained from a single fiber which was on the order of 10 μm in diameter. These experiments were performed directly from the surface of a tape lift of the fiber with a background of extraneous fibers.

IR-MALDESI Imaging of Fibers on Tape-Lift

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Goodpaster JV, Liszewski EA (2009) Forensic analysis of dyed textile fibers. Anal Bioanal Chem 394:2009–2018

    Article  CAS  Google Scholar 

  2. Macrae R, Smalldon KW (1979) The extraction of dyestuffs from single wool fibers. J Forensic Sci 24:109–116

    CAS  Google Scholar 

  3. Lesney MS (2004) Forensic mass spectrometry. Today’s Chem Work 13:15–16

    Google Scholar 

  4. Tuinman AA, Lewis LA, Lewis SA (2003) Trace-fiber color discrimination by electrospray ionization mass spectrometry: a tool for the analysis of dyes extracted from submillimeter nylon fibers. Anal Chem 75:2753–2760

    Article  CAS  Google Scholar 

  5. West JC (1981) Extraction and analysis of disperse dyes on polyester textiles. J Chromatogr A 208:47–54

    Article  CAS  Google Scholar 

  6. Cheng J, Wanogho SO, Watson ND, Caddy B (1991) The extraction and classification of dyes from cotton fibres using different solvent systems. J Forensic Sci Soc 31:31–40

    Article  Google Scholar 

  7. Stefan A, Dockery C, Baguley B, Vann B, Nieuwland A, Hendrix J, Morgan S (2009) Microextraction, capillary electrophoresis, and mass spectrometry for forensic analysis of azo and methine basic dyes from acrylic fibers. Anal Bioanal Chem 394:2087–2094

    Article  CAS  Google Scholar 

  8. Dockery C, Stefan A, Nieuwland A, Roberson S, Baguley B, Hendrix J, Morgan S (2009) Automated extraction of direct, reactive, and vat dyes from cellulosic fibers for forensic analysis by capillary electrophoresis. Anal Bioanal Chem 394:2095–2103

    Article  CAS  Google Scholar 

  9. Dale MJ, Zhan Q, Zenobi R, Costello K, Langridge-Smith PRR (1995) Analysis of dyestuffs on polyester using laser desorption-laser photoionisation mass spectrometry. Anal Methods Instrum 2:101–105

    CAS  Google Scholar 

  10. Selvius DRC, Armitage RA (2011) Direct identification of dyes in textiles by direct analysis in real time-time of flight mass spectrometry. Anal Chem 83:6924–6928

    Article  Google Scholar 

  11. Cochran KH, Barry JA, Muddiman DC, Hinks D (2013) Direct analysis of textile fabrics and dyes using infrared matrix-assisted laser desorption electrospray ionization mass spectrometry. Anal Chem 85:831–836

    Article  CAS  Google Scholar 

  12. Ifa D, Jackson A, Paglia G, Cooks RG (2009) Forensic applications of ambient ionization mass spectrometry. Anal Bioanal Chem 394:1995–2008

    Article  CAS  Google Scholar 

  13. Morelato M, Beavis A, Kirkbride P, Roux C (2013) Forensic applications of desorption electrospray ionisation mass spectrometry (DESI-MS). Forensic Sci Int 226:10–21

    Article  CAS  Google Scholar 

  14. Green FM, Salter TL, Stokes P, Gilmore IS, O’Connor G (2010) Ambient mass spectrometry: advances and applications in forensics. Surf Interface Anal 42:347–357

    Article  CAS  Google Scholar 

  15. Sampson J, Hawkridge A, Muddiman D (2006) Generation and detection of multiply-charged peptides and proteins by matrix-assisted laser desorption electrospray ionization (MALDESI) fourier transform ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectrom 17:1712–1716

    Article  CAS  Google Scholar 

  16. Robichaud G, Barry JA, Garrard KP, Muddiman DC (2013) Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) imaging source coupled to a FT-ICR mass spectrometer. J Am Soc Mass Spectrom 24:92–100

    Article  CAS  Google Scholar 

  17. Robichaud G, Barry JA, Muddiman DC (2014) IR-MALDESI mass spectrometry imaging of biological tissue sections using ice as a matrix. J Am Soc Mass Spectrom 25:319–328

    Article  CAS  Google Scholar 

  18. Barry JA, Robichaud G, Thompson C, Sykes C, Kashuba ADM, Muddiman DC (2014) Mapping antiretroviral drugs in tissue by IR-MALDESI MSI coupled to the Q Exactive and comparison with LC-MS/MS SRM assay. J Am Soc Mass Spectrom. doi:10.1007/S13361-13014-10884-13361

    Google Scholar 

  19. Spengler B, Hubert M, Kaufman R (1994) in Proceedings of the 42nd Annual Conference on Mass Spectrometry and Allied Topics. Chicago, Illinois, p 1041

  20. Caprioli RM, Farmer TB, Gile J (1997) Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem 69:4751–4760

    Article  CAS  Google Scholar 

  21. Castellino S, Groseclose MR, Wagner D (2011) MALDI imaging mass spectrometry: bridging biology and chemistry in drug development. Bioanalysis 3:2427–2441

    Article  CAS  Google Scholar 

  22. Chaurand P (2012) Imaging mass spectrometry of thin tissue sections: a decade of collective efforts. J Proteomics 75:4883–4892

    Article  CAS  Google Scholar 

  23. Calligaris D, Norton I, Feldman DR, Ide JL, Dunn IF, Eberlin LS, Graham CR, Jolesz FA, Golby AJ, Santagata S, Agar NY (2013) Mass spectrometry imaging as a tool for surgical decision-making. J Mass Spectrom 48:1178–1187

    Article  CAS  Google Scholar 

  24. Norris JL, Caprioli RM (2013) Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem Rev 113(4):2309–2342. doi:10.1021/cr3004295

  25. Römpp A, Spengler B (2013) Mass spectrometry imaging with high resolution in mass and space. Histochem Cell Biol 139:759–783

    Article  Google Scholar 

  26. Ye H, Gemperline E, Li L (2013) A vision for better health: mass spectrometry imaging for clinical diagnostics. Clin Chim Acta 420:11–22

    Article  CAS  Google Scholar 

  27. Ifa DR, Gumaelius LM, Eberlin LS, Manicke NE, Cooks RG (2007) Forensic analysis of inks by imaging desorption electrospray ionization (DESI) mass spectrometry. Analyst 132:461–467

    Article  CAS  Google Scholar 

  28. Ifa DR, Manicke NE, Dill AL, Cooks RG (2008) Latent fingerprint chemical imaging by mass spectrometry. Science 321:805

    Article  CAS  Google Scholar 

  29. Zhou C, Li M, Garcia R, Crawford A, Beck K, Hinks D, Griffis DP (2012) Time-of-flight-secondary ion mass spectrometry method development for high-sensitivity analysis of acid dyes in nylon fibers. Anal Chem 84:10085–10090

    Article  CAS  Google Scholar 

  30. Frei-Sultzer M (1951) Die sicherung von mikrospuren mit klebband. Kriminalistik 20:190–194

    Google Scholar 

  31. Pounds CA (1975) The recovery of fibres from the surface of clothing for forensic examinations. J Forensic Sci Soc 15:127–132

    Article  CAS  Google Scholar 

  32. Lowrie CN, Jackson G (1991) Recovery of transferred fibres. Forensic Sci Int 50:111–119

    Article  Google Scholar 

  33. Grieve MC, Wiggins KG (2001) Fibers under fire: suggestions for improving their use to provide forensic evidence. J Forensic Sci 46:835–843

    CAS  Google Scholar 

  34. Robertson J, Grieve M (1999) CRC Press, Boca Raton, 2nd edn., p 447

  35. De Wael K, Gason FGCSJ, Baes CAV (2008) Selection of an adhesive tape suitable for forensic fiber sampling. J Forensic Sci 53:168–171

    Article  Google Scholar 

  36. Barry JA, Muddiman DC (2011) Global optimization of the infrared matrix-assisted laser desorption electrospray ionization (IR MALDESI) source for mass spectrometry using statistical design of experiments. Rapid Commun Mass Spectrom 25:3527–3536

    Article  CAS  Google Scholar 

  37. Kessner D, Chambers M, Burke R, Agus D, Mallick P (2008) Proteowizard: open source software for rapid proteomics tools development. Bioinformatics 24:2534–2536

    Article  CAS  Google Scholar 

  38. Robichaud G, Garrard K, Barry J, Muddiman D (2013) MSiReader: an open-source interface to view and analyze high resolving power ms imaging files on Matlab platform. J Am Soc Mass Spectrom 24:718–721

    Article  CAS  Google Scholar 

  39. www.msireader.com (Accessed: 2014)

  40. Gorzka Z, Kraska J, Ławniczak H (1984) Investigations on kinetics of decomposition of chromium complex dyes of 1:2 and 1:1 types. Dyes Pigm 5:263–275

    Article  CAS  Google Scholar 

  41. Nemes P, Huang H, Vertes A (2012) Internal energy deposition and ion fragmentation in atmospheric-pressure mid-infrared laser ablation electrospray ionization. Phys Chem Chem Phys 14:2501–2507

    Article  CAS  Google Scholar 

  42. Dixon RB, Sampson JS, Hawkridge AM, Muddiman DC (2008) Ambient aerodynamic ionization source for remote analyte sampling and mass spectrometric analysis. Anal Chem 80:5266–5271

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Muddiman.

Additional information

Published in the topical collection celebrating ABCs 13th Anniversary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cochran, K.H., Barry, J.A., Robichaud, G. et al. Analysis of trace fibers by IR-MALDESI imaging coupled with high resolving power MS. Anal Bioanal Chem 407, 813–820 (2015). https://doi.org/10.1007/s00216-014-8042-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8042-y

Keywords

Navigation